4,827 research outputs found

    The Form Factor Program: a Review and New Results - the Nested SU(N) Off-Shell Bethe Ansatz

    Get PDF
    The purpose of the ''bootstrap program'' for integrable quantum field theories in 1+1 dimensions is to construct explicitly a model in terms of its Wightman functions. In this article, this program is mainly illustrated in terms of the sinh-Gordon model and the SU(N) Gross-Neveu model. The nested off-shell Bethe ansatz for an SU(N) factorizing S-matrix is constructed. We review some previous results on sinh-Gordon form factors and the quantum operator field equation. The problem of how to sum over intermediate states is considered in the short distance limit of the two point Wightman function for the sinh-Gordon model.Comment: This is a contribution to the Proc. of the O'Raifeartaigh Symposium on Non-Perturbative and Symmetry Methods in Field Theory (June 2006, Budapest, Hungary), published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Fast computation of the Kohn-Sham susceptibility of large systems

    Full text link
    For hybrid systems, such as molecules grafted onto solid surfaces, the calculation of linear response in time dependent density functional theory is slowed down by the need to calculate, in N^4 operations, the susceptibility of N non interacting Kohn-Sham reference electrons. We show how this susceptibility can be calculated N times faster within finite precision. By itself or in combination with previous methods, this should facilitate the calculation of TDDFT response and optical spectra of hybrid systems.Comment: submitted 25/1/200

    Fate of topological states in incommensurate generalized Aubry-Andr\'e models

    Get PDF
    We study one-dimensional optical lattices described by generalized Aubry-Andr\'e models that include both commensurate and incommensurate modulations of the hopping amplitude. This brings together two interesting features of this class of systems: Anderson localization and the existence of topological edge states. We follow changes of the single-particle energy spectrum induced by variations of the system parameters, with focus on the survival of topological states in the localized regime.Comment: 5 pages, 5 figure

    Ground-states of spin-1 bosons in asymmetric double-wells

    Full text link
    In this work we investigate the different states of a system of spin-1 bosons in two potential wells connected by tunneling, with spin-dependent interaction. The model utilizes the well-known Bose-Hubbard Hamiltonian, adding a local interaction term that depends on the modulus of the total spin in a well, favoring a high- or low-spin state for different signs of the coupling constant. We employ the concept of fidelity to detect critical values of parameters for which the ground state undergoes significant changes. The nature of the states is investigated through evaluation of average occupation numbers in the wells and of spin correlations. A more detailed analysis is done for a two-particle system, but a discussion of the three-particle case and some results for larger numbers are also presented.Comment: 7 pages, 10 figure

    Bethe ansatz solution of the closed anisotropic supersymmetric U model with quantum supersymmetry

    Full text link
    The nested algebraic Bethe ansatz is presented for the anisotropic supersymmetric UU model maintaining quantum supersymmetry. The Bethe ansatz equations of the model are obtained on a one-dimensional closed lattice and an expression for the energy is given.Comment: 7 pages (revtex), minor modifications. To appear in Mod. Phys. Lett.

    Near-Infrared spectroscopy of the super star cluster in NGC1705

    Full text link
    We study the near-infrared properties of the super star cluster NGC1750-1 in order to constrain its spatial extent, its stellar population and its age. We use adaptive optics assisted integral field spectroscopy with SINFONI on the VLT. We estimate the spatial extent of the cluster and extract its K-band spectrum from which we constrain the age of the dominant stellar population. Our observations have an angular resolution of about 0.11", providing an upper limit on the cluster radius of 2.85+/-0.50 pc depending on the assumed distance. The K-band spectrum is dominated by strong CO absorption bandheads typical of red supergiants. Its spectral type is equivalent to a K4-5I star. Using evolutionary tracks from the Geneva and Utrecht groups, we determine an age of 12+/-6 Myr. The large uncertainty is rooted in the large difference between the Geneva and Utrecht tracks in the red supergiants regime. The absence of ionized gas lines in the K-band spectrum is consistent with the absence of O and/or Wolf-Rayet stars in the cluster, as expected for the estimated age.Comment: 5 pages, 4 figures. Research Note accepted in Astronomy and Astrophysic

    Finite-size effects in Anderson localization of one-dimensional Bose-Einstein condensates

    Full text link
    We investigate the disorder-induced localization transition in Bose-Einstein condensates for the Anderson and Aubry-Andre models in the non-interacting limit using exact diagonalization. We show that, in addition to the standard superfluid fraction, other tools such as the entanglement and fidelity can provide clear signatures of the transition. Interestingly, the fidelity exhibits good sensitivity even for small lattices. Effects of the system size on these quantities are analyzed in detail, including the determination of a finite-size-scaling law for the critical disorder strength in the case of the Anderson model.Comment: 15 pages, 7 figure
    corecore