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Fate of topological states in incommensurate generalized Aubry-André models
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We study one-dimensional optical lattices described by generalized Aubry-André models that include both
commensurate and incommensurate modulations of the hopping amplitude. This brings together two interesting
features of this class of systems: Anderson localization and the existence of topological edge states. We follow
changes of the single-particle energy spectrum induced by variations of the system parameters, with focus on the

survival of topological states in the localized regime.
DOI: 10.1103/PhysRevB.93.205441

I. INTRODUCTION

In recent years, rapid progress in techniques for creating
ultracold-atom systems in the laboratory allowed the ex-
perimental realization of many interesting models originally
proposed to study specific properties of real solids. For
instance, the construction of bichromatic lattices with incom-
mensurate potentials led to observation [1-3] of the Anderson-
localization transition [4] in one dimension, which cannot hap-
pen for true disorder. Such a transition has received the atten-
tion of theoreticians for many years [5—10]. In this context, the
standard theoretical approach utilizes the Aubry-André (AA)
model [11], intimately related to the Harper-Hofstadter (HH)
model [12,13] for electrons in a two-dimensional (2D) lattice
in the presence of a perpendicular magnetic field. The latter is
mapped onto a one-dimensional (1D) system with a modulat-
ing potential superimposed to the lattice, its period (1/8) being
determined by the magnetic-field intensity. Thus, the relative
periodicities between modulating potential and lattice can be
tuned in principle to any ratio. The energy spectrum for varying
B appears as the famous Hofstadter butterfly [13]. This link
between the 2D HH and 1D AA models has also been explored
from the point of view of topological properties [14—-16]. This
revealed connections with seemingly unrelated systems, such
as topological insulators [17] and superconductors [18], as
well as the quantum Hall effect (QHE) [19-21].

Lately, extensions of the AA model have been pro-
posed [22,23] including periodic modulations of the nearest-
neighbor hopping amplitude. An incommensurate hopping
modulation leads to Anderson-like localization [22], thus
mimicking disorder, as does the diagonal AA potential, while
a commensurate modulation brings up new features, such as
the appearance of zero-energy topological edge states [23].
Here we combine commensurate and incommensurate off-
diagonal modulations, which turns out to be nontrivial from
the point of view of topological properties. Indeed, we find that
topological edge states are robust against an incommensurate
perturbation, surviving the localization transition in a certain
range of parameters. This result opens new perspectives for the
investigation of the interplay between topology and disorder.

A generalized Aubry-André model, including commensu-
rate and incommensurate hopping modulations as well as a
diagonal incommensurate potential, may be described by the
Hamiltonian

H=—1Y [+ +8)al, a; + He) + gialal, (1)
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where

Ai = A cosQmbi + ¢),
g = AcosQrfBi + ¢a)

8i = 8 cos(2npi + ¢s),
cos(2r i + s @

are commensurate and incommensurate hopping modulations,
and the diagonal AA potential, respectively; i assumes integer
values labeling lattice sites; ¢ represents the hopping (or
tunneling) amplitude; the creation and annihilation operators

alT and a; can be bosonic or fermionic (differences being in the
nature of many-body states). The phases in the three periodic
terms are possibly all different. The inverse wavelengths of
commensurate and incommensurate modulations are respec-
tively denoted as b and 8. We will mostly focus on the case b =
1/2, and we fix g = (1 + \/5)/2, the golden ratio. Without
off-diagonal modulation (A = § = 0), one recovers the usual
AA model. For simplicity, we will refer to A as modulation
amplitude, and to A and § as (respectively, diagonal and
off-diagonal) disorder strengths, since the incommensurate
terms can be viewed as a kind of (nonrandom) disorder.

Our aim is to investigate how the disorder perturbations
affect the spectrum obtained in the commensurate case
(A =8 = 0), with special attention to what happens to the
topological states. We will do this by exact diagonalization
on finite lattices. Complementing a direct visualization of the
energy spectrum as it evolves under the perturbation, a more
detailed analysis of its changes will be done by calculating
the superfluid fraction [24], and the ground-sate fidelity [25].
This latter quantity is known to be a powerful tool to detect
precursors of quantum phase transitions (QPTs). Particularly
for the kind of lattice models addressed here, we have
previously shown [9] that it is sensitive to ground-state changes
at the QPT critical parameters even for fairly small systems.

II. LOCALIZATION

As mentioned above, an Anderson-like localization transi-
tion occurs in the usual AA model (A = § = 0) for a critical
A, =2t when B is the golden ratio. In a Bose-Einstein
condensate, the localized phase is characterized by a null value
of the superfluid fraction, which is calculated by imposing
twisted periodic boundary conditions with a small twist angle
0. The superfluid fraction f; is then proportional to the
energy difference between twisted and nontwisted ground
states divided by #2. For finite lattices, it is necessary to
utilize a golden-ratio approximation as the quotient between
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FIG. 1. Superfluid fraction (top) and ground-state fidelity (bot-
tom) as functions of disorder strength § for the indicated values of
modulation amplitude A. Notice the coincidence of critical points.

two consecutive Fibonacci numbers, one of which is the
number of lattice sites [26]. On the other hand, the ground-state
fidelity, in this case defined as the scalar product between two
ground-state vectors corresponding to slightly different values
of A, is able to detect the transition as a sharp minimum at A,
both with periodic or open boundary conditions.

Anderson localization also occurs in generalized AA mod-
els with combined diagonal and off-diagonal disorder [22].
Here, we focus on purely off-diagonal disorder [A =0, # 0
in Egs. (1) and (2)] but in the presence of commensurate
hopping modulation (A # 0), in order to have zero-energy
topological states. It turns out that the critical disorder strength
8. depends on the modulation amplitude A. The top panel of
Fig. 1 shows the superfluid fraction f; as a function of § for
b = 1/2 and different values of L. One can clearly see critical
values of § at which f; drops to zero, indicating localization.
In the bottom panel of Fig. 1 we plot the fidelity between
two ground-states differing by a small variation in 8. This
fidelity has pronounced minima exactly at the values of § for
which the superfluid fraction vanishes, consistent with their
identification as critical values for a localization transition.

The superfluid-fraction curves in Fig. 1 were obtained with
periodic boundary conditions on lattices of 144 sites, with
B = 233/144, a rational approximant of the golden ratio. On
the other hand, fidelity values shown in the same figure were
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calculated with open boundary conditions for chains of 200
sites. The coincidence of §. values is remarkable. Other lattice
sizes were checked with essentially coincident results.

A superfluid fraction in principle implies a bosonic sys-
tem, while related problems, such as topological insulators
and superconductors, involve fermions. However, the single-
particle energy spectrum is the same, and our focus is on
the noninteracting limit. A fundamental difference would be
the relevance of the Fermi level rather than the lowest-energy
state, but localization occurs for all states in one dimension. In
practice, the superfluid fraction is used here only to indicate
the presence of extended or localized states. It should also be
noticed that f; is proportional to the helicity modulus [27],
which is more general, an can be viewed as a measure of
wave-function coherence across the system.

The values of &, that we obtained obey a simple linear
relation, §.(A) = 1 — A. The maximum value of f; is also
strongly dependent on A, as seen in Fig. 1. In particular,
the curves f(8) tend to a single point (f; =0, § = 0) for
A = 1. The kind of localization that occurs for A = 1 when
8 =0 can be understood as a cancellation of the uniform
hopping term with the modulated one. Since cos(mwi) = %1
for odd/even i, the net hopping amplitude #(1 + A;) alternates
between 2t and 0, so that the 1D lattice breaks down into
isolated dimers, and the localization becomes frivial. If we
then turn on the incommensurate hopping term, we find that the
superfluid fraction remains zero, since this essentially random
connection is not capable of building up extended states. All
these results concerning localization were obtained for zero
phases (ps = ¢ = 0). The effect of nonzero phases will be
discussed in the following.

III. TOPOLOGICAL STATES

The purely commensurate off-diagonal model withb = 1/2
shows degenerate pairs of zero-energy topological states in
the phase region |¢| < 7 /2 (and equivalent regions displaced
by 2m) [23]. These states can be seen in the first plot of
Fig. 2. Zero-energy topological states may be associated
with Majorana fermions [18]. Such particles are their own
antiparticles, i.e., creation and annihilation operators are equal.
They can be defined as linear combinations of creation and
annihilation operators for real fermions, which is possible in
a particle-hole symmetric situation. Kitaev [28] used these
operators in a simple mean-field model of a 1D superconductor
with p-wave nearest-neighbor pairing. It defines a chain in
which alternate pairs of sites are coupled, leaving two unpaired
Majorana fermions at the ends. A real 1D superconductor,
with spin-1/2 electrons, would not be time-reversal invariant
in this case, and should belong to the topology class D [29].
However, the model as originally proposed, with spinless
fermions, is both time-reversal invariant and particle-hole
symmetric, which implies chiral (or sublattice) symmetry. So,
the spinless Kitaev-model is classified into the BDI topology
class [29]. This is the same topology of a tight-binding chain
with alternating hopping integrals #,,#,, related to a model of
polyacetylene [30]. It turns out to be also the topology of the
purely commensurate generalized AA model with > = 1/2 in
the phase region where topological states exist, where we have
ty =t(1 —Xicosg)and t, = t(1 + A cos @).
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FIG. 2. Energy spectrum as a function of ¢ for A = 0.5 and ¢; = 0, with § = 0,0.5,1.5 (from left to right). Gaps open up under the
incommensurate perturbation, but eventually states are pushed to the low-energy region.

As implied by the above discussion, the observed topo-
logical states are edge states, hence only appearing for open
boundary conditions. One should notice that, in contrast to
what happens in the QHE, edge states in a 1D system are
localized. Then, they may in principle survive after the system
undergoes Anderson-like localization. We will show that it
actually happens in the case off-diagonal disorder. In contrast, a
diagonal AA potential displaces the edge states away from zero
energy for any A # 0, which is consistent with the breakdown
of chiral symmetry by local disorder.

In Fig. 2 we plot the energy eigenvalues as functions of ¢,
for A = 0.5 and fixed @5 = 0, showing the trend of spectrum
evolution as the disorder strength § increases. Starting from
the purely commensurate case (first plot), we observe that (i)
gaps open up, and the bands are substantially reshaped when
disorder is turned on (middle plot), but the topological states
have not changed; (ii) at § = 1.5 (last plot), band states have
been pushed to the middle of the gap, and the topological
states are no longer visible. Thus, we find that the topological
states survive the localization transition, but they eventually
disappear at a new critical value §, > 8. This is better seen in
an expanded view of the low-energy region presented in Fig. 3.
It highlights the states with energy close to zero near ¢ = 0,
showing that in this case (A = 0.5) the zero-energy degeneracy
is lifted for §. ~ 1.5, while at a slightly smaller value of § the
topological states are still clearly visible. The lower panels in
Fig. 3 are plots of wave-function amplitudes corresponding to
the indicated eigenvalues. At §, the states no longer have the
edge character still noticeable for § = 1.49.

As observed for §, in the localization transition, the
critical value 8, also varies with A. Systematically studying
this variation, we found that it also follows a simple linear
relationship, which in this case is 5. = 1 + A. Based on this,
we constructed a phase diagram of the generalized AA model
(without site-diagonal potential), shown in Fig. 4. It presents
three distinct phases: conductor with Majorana states (I),
Anderson insulator with Majorana states (II), and Anderson
insulator without Majorana states (III). By conductor we mean
a system in which the bulk single-particle states are extended.

The phase diagram of Fig. 4 is for null phases (ps = ¢ = 0).
The role of ¢ is easily revealed. As we are restricting ourselves
to the b = 1/2 model, the A; term in (1) is, in fact, A cos(wi +
@) = A cos(p)cos(mwi) = Acos(p) cos(2mbi). Therefore, the
results for ¢ # 0 can be directly obtained from the ones for
¢ = 0 by just substituting A, = A cos(¢) for A. Then, to obtain

phase diagrams for nonzero values of ¢ it suffices to rescale
the horizontal axis in Fig. 4 by a factor 1/ cos(g). With this,
the value of A for which &, vanishes moves to the right, and the
angle between the two straight lines decreases. When ¢ = /2,
the point A, = 1 corresponds to A — 0o, and the two lines
coincide horizontally, implying that the only transition occurs
até, = 1, between a conductor and an Anderson insulator. This
happens at the “Dirac points” of the purely commensurate
spectrum (first plot in Fig. 2) for which we have a single
continuous band and no topological states. For any finite A,
this is equivalent to a simple lattice (uniform nearest-neighbor
hopping), to which addition of an incommensurate hopping
modulation leads to localization at § = 1.

The effect of varying the phase ¢s of the disorder term
is not as easy to describe in a general way since it is not
possible to absorb this phase into an effective amplitude. So
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FIG. 3. Expanded view (notice the scale factors) of the spectra
for A = 0.5 and two values of § around the critical value for which
topological states are suppressed. Representative wave functions
(lower plots) show the edge character of zero-energy states (left),
absent when they split off (right).
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FIG. 4. Phase diagram of model (1) with A = 0. The phases are
(D) conductor with Majorana states, (II) Anderson insulator with
Majorana states, and (III) Anderson insulator without Majorana
states.

far our analysis has been restricted to ¢; = 0. If we now lock
the phases of commensurate and incommensurate modulations
(ps = @), the overall spectrum structure remains essentially as
in Fig. 2, except for one important difference: the bands never
truly split off with increasing §, but remain connected across
the gaps by pairs of edge states. These are reminiscent of
edge states in topological insulators or the QHE. However,
Majorana states are also present in the region of small |@s|
(mod 2m). An example spectrum is presented in Fig. 5. The
low-energy region near ¢ = 0 in the coupled-phases model
is very similar to that presented in Fig. 3, indicating that the
survival and subsequent disappearance of zero-energy states
is not significantly changed by phase locking in that region.
However, we have preliminary evidence that zero-energy states
may continue to exist for other phase values. This interesting
possibility deserves further investigation.

The observed spectral differences indicate that the gener-
alized off-diagonal AA model with coupled phases and the
one with the incommensurate-term phase fixed at zero belong
to different topological classes. The model with coupled
phases has the same topology as the purely commensurate
one (A # 0,6 =0), since one spectrum can be “deformed”
into the other, by variation of the parameter §, without closing
(or opening) gaps. This is not the case with fixed ¢; = 0, as
shown in Fig. 2. The existence of different topologies can
be understood by the effective two-dimensionality of the AA
model in its correspondence to the HH model, as discussed in
the Introduction. In fact, the phase ¢ is actually a degree of
freedom since it is proportional to the transverse momentum
of the electrons in the 2D model.
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FIG. 5. Energy spectrum of the generalized AA model with
locked modulation phases s = ¢. In this example we have A =6 =
0.5. Notice that pairs of edge states connect neighboring bands across
the gaps. Otherwise, the spectrum is very similar to the one for ¢; = 0
shown in Fig. 2.

IV. CONCLUSIONS

We investigated extensions of the one-dimensional Aubry-
André model in which a commensurate modulation of the
hopping amplitude gives rise to topological states of zero
energy, associated with Majorana fermions. We focused on
how an off-diagonal disorder, realized by an incommensurate
hopping modulation, affects the energy spectrum, inducing
Anderson-like localization. We found out that the topological
zero-energy states survive after the localization transition up to
a second critical value of the disorder strength. In addition, we
observed that topological properties depend on the relationship
between the phases of commensurate and incommensurate
modulations.

Real physical systems, ranging from polymers [30] and
solid-state nanostructures [28] to optically confined cold-
atom lattices [1,2,31] and light propagation in waveguide
arrays [3,15], can be described by the kind of models studied
here. The fact that quasiperiodic potentials can be realized in
these systems implies that experimental investigations of the
interplay between topology and disorder that we addressed
here can be carried on.
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