184 research outputs found

    Rancang Bangun Aplikasi Pencatatan Transaksi Penjualan Tiket pada PT Gery Anugerah Tour And Travel di Kupang - Nusa Tenggara Timur

    Full text link
    PT. Gery Anugerah Tours & Travel is a travel agency company located in the city of Kupang, East Nusa Tenggara. PT. Gery Anugerah Tours & Travel is here to serve the needs of customers for services ticketing domestic and International flights. The management of the company is promoting superior service to customers. In 2013 and 2014 the company experienced a very rapid increase in the sale of airline tickets, with increasing sales then give a positive impact to the company so that the company provides to the customer convenience in transaction using cash or credit. Given the ease of appearing an obstacle in the form of ticket sales related record keeping became sloppy in filing into sales reporting. Ticket sales transaction records that are not neatly arranged this represented a loss of 12% of the records of the sales and the loss of customers who have previously made booking tickets. Any problems that occur, it will be created an information system that will govern the sale of tickets as well as ticket sales reporting company, in order to eliminate the losses incurred earlier. The information system that will be created is the application of transaction records in ticket sales

    Infective endocarditis caused by Enterobacteriaceae:phenotypic and molecular characterization of Escherichia coli and Klebsiella pneumoniae in Rio de Janeiro, Brazil

    Get PDF
    The etiological agent for infective endocarditis (IE), a life-threatening disease, is usually gram-positive bacteria. However, gram-negative bacteria can rarely cause IE and 4% of cases are associated with morbidity and mortality. This study aimed to characterize Escherichia coli and Klebsiella pneumoniae isolates from the blood of patients with IE. The characteristics of blood isolates were compared with those of urinary isolates from patients with urinary tract infections (UTIs). The results of this study revealed that K. pneumoniae isolates from patients with IE were phylogenetically related to those from patients with UTI. Additionally, the resistance phenotype, resistance gene, virulence gene, and plasmid profiles were similar between the blood and urinary isolates. The isolates belonging to the sequence types (STs) 76, 36, 101 (K. pneumoniae), and 69 (E. coli) are reported to be associated with drug resistance. The Enterobacteriaceae isolates from patients with IE did not produce extended-spectrum β-lactamase or carbapenemase. Additionally, this study investigated the virulence phenotype, biofilm formation ability, and the ability to adhere to the epithelial cells in vitro of the isolates. The isolates from patients with IE exhibited weaker biofilm formation ability than the urinary isolates. All isolates from patients with IE could adhere to the renal epithelial cells. However, three isolates from patients with UTIs could not adhere to the epithelial cells. The closely related K. pneumoniae isolates (648, KP1, KP2, KP3, and KP4) could not form biofilms or adhere to the epithelial cells. In summary, the molecular analysis revealed that the genetic characteristics of IE-causing K. pneumoniae and E. coli were similar to those of UTI-causing isolates. These isolates belonged to the STs that are considered treatable. Genetically similar isolates did not exhibit the same virulence phenotype. Thus, these non-hypervirulent clones must be monitored as they can cause complex infections in susceptible hosts

    Determining the virulence properties of Escherichia coli ST131 containing bacteriocin-encoding plasmids using short-and long-read sequencing and comparing them with those of other E. Coli lineages

    Get PDF
    T. Escherichia coli ST131 is a clinical challenge due to its multidrug resistant profile and successful global spread. They are often associated with complicated infections, particularly urinary tract infections (UTIs). Bacteriocins play an important role to outcompete other microorganisms present in the human gut. Here, we characterized bacteriocin-encoding plasmids found in ST131 isolates of patients suffering from a UTI using both short-and long-read sequencing. Colicins Ia, Ib and E1, and microcin V, were identified among plasmids that also contained resistance and virulence genes. To investigate if the potential transmission range of the colicin E1 plasmid is influenced by the presence of a resistance gene, we constructed a strain containing a plasmid which had both the colicin E1 and blaCMY-2 genes. No difference in transmission range was found between transformant and wild-type strains. However, a statistically significantly difference was found in adhesion and invasion ability. Bacteriocin-producing isolates from both ST131 and non-ST131 lineages were able to inhibit the growth of other E. coli isolates, including other ST131. In summary, plasmids harboring bacteriocins give additional advantages for highly virulent and resistant ST131 isolates, improving the ability of these isolates to compete with other microbiota for a niche and thereby increasing the risk of infection

    Quiescence: early evolutionary origins and universality do not imply uniformity

    Get PDF
    Cell cycle investigations have focused on relentless exponential proliferation of cells, an unsustainable situation in nature. Proliferation of cells, whether microbial or metazoan, is interrupted by periods of quiescence. The vast majority of cells in an adult metazoan lie quiescent. As disruptions in this quiescence are at the foundation of cancer, it will be important for the field to turn its attention to the mechanisms regulating quiescence. While often presented as a single topic, there are multiple forms of quiescence each with complex inputs, some of which are tied to conceptually challenging aspects of metazoan regulation such as size control. In an effort to expose the enormity of the challenge, I describe the differing biological purposes of quiescence, and the coupling of quiescence in metazoans to growth and to the structuring of tissues during development. I emphasize studies in the organism rather than in tissue culture, because these expose the diversity of regulation. While quiescence is likely to be a primitive biological process, it appears that in adapting quiescence to its many distinct biological settings, evolution has diversified it. Consideration of quiescence in different models gives us an overview of this diversity

    TRIP13 and APC15 drive mitotic exit by turnover of interphase- and unattached kinetochore-produced MCC

    Get PDF
    The mitotic checkpoint ensures accurate chromosome segregation through assembly of the mitotic checkpoint complex (MCC), a soluble inhibitor of the anaphase-promoting complex/cyclosome (APC/C) produced by unattached kinetochores. MCC is also assembled during interphase by Mad1/Mad2 bound at nuclear pores, thereby preventing premature mitotic exit prior to kinetochore maturation and checkpoint activation. Using degron tagging to rapidly deplete the AAA+ ATPase TRIP13, we show that its catalytic activity is required to maintain a pool of open-state Mad2 for MCC assembly, thereby supporting mitotic checkpoint activation, but is also required for timely mitotic exit through catalytic disassembly of MCC. Strikingly, combining TRIP13 depletion with elimination of APC15-dependent Cdc20 ubiquitination/degradation results in a complete inability to exit mitosis, even when MCC assembly at unattached kinetochores is prevented. Thus, mitotic exit requires MCC produced either in interphase or mitosis to be disassembled by TRIP13-catalyzed removal of Mad2 or APC15-driven ubiquitination/degradation of its Cdc20 subunit

    Specification of Drosophila Corpora Cardiaca Neuroendocrine Cells from Mesoderm Is Regulated by Notch Signaling

    Get PDF
    Drosophila neuroendocrine cells comprising the corpora cardiaca (CC) are essential for systemic glucose regulation and represent functional orthologues of vertebrate pancreatic α-cells. Although Drosophila CC cells have been regarded as developmental orthologues of pituitary gland, the genetic regulation of CC development is poorly understood. From a genetic screen, we identified multiple novel regulators of CC development, including Notch signaling factors. Our studies demonstrate that the disruption of Notch signaling can lead to the expansion of CC cells. Live imaging demonstrates localized emergence of extra precursor cells as the basis of CC expansion in Notch mutants. Contrary to a recent report, we unexpectedly found that CC cells originate from head mesoderm. We show that Tinman expression in head mesoderm is regulated by Notch signaling and that the combination of Daughterless and Tinman is sufficient for ectopic CC specification in mesoderm. Understanding the cellular, genetic, signaling, and transcriptional basis of CC cell specification and expansion should accelerate discovery of molecular mechanisms regulating ontogeny of organs that control metabolism

    Gebiss: an ImageJ plugin for the specification of ground truth and the performance evaluation of 3D segmentation algorithms.

    Get PDF
    Background: Image segmentation is a crucial step in quantitative microscopy that helps to define regions of tissues, cells or subcellular compartments. Depending on the degree of user interactions, segmentation methods can be divided into manual, automated or semi-automated approaches. 3D image stacks usually require automated methods due to their large number of optical sections. However, certain applications benefit from manual or semi-automated approaches. Scenarios include the quantification of 3D images with poor signal-to-noise ratios or the generation of so-called ground truth segmentations that are used to evaluate the accuracy of automated segmentation methods. Results: We have developed Gebiss; an ImageJ plugin for the interactive segmentation, visualisation and quantification of 3D microscopic image stacks. We integrated a variety of existing plugins for threshold-based segmentation and volume visualisation. Conclusions: We demonstrate the application of Gebiss to the segmentation of nuclei in live Drosophila embryos and the quantification of neurodegeneration in Drosophila larval brains. Gebiss was developed as a cross-platform ImageJ plugin and is freely available on the web at http://imaging.bii.a-star.edu.sg/projects/gebiss

    Canalization of Gene Expression and Domain Shifts in the Drosophila Blastoderm by Dynamical Attractors

    Get PDF
    The variation in the expression patterns of the gap genes in the blastoderm of the fruit fly Drosophila melanogaster reduces over time as a result of cross regulation between these genes, a fact that we have demonstrated in an accompanying article in PLoS Biology (see Manu et al., doi:10.1371/journal.pbio.1000049). This biologically essential process is an example of the phenomenon known as canalization. It has been suggested that the developmental trajectory of a wild-type organism is inherently stable, and that canalization is a manifestation of this property. Although the role of gap genes in the canalization process was established by correctly predicting the response of the system to particular perturbations, the stability of the developmental trajectory remains to be investigated. For many years, it has been speculated that stability against perturbations during development can be described by dynamical systems having attracting sets that drive reductions of volume in phase space. In this paper, we show that both the reduction in variability of gap gene expression as well as shifts in the position of posterior gap gene domains are the result of the actions of attractors in the gap gene dynamical system. Two biologically distinct dynamical regions exist in the early embryo, separated by a bifurcation at 53% egg length. In the anterior region, reduction in variation occurs because of stability induced by point attractors, while in the posterior, the stability of the developmental trajectory arises from a one-dimensional attracting manifold. This manifold also controls a previously characterized anterior shift of posterior region gap domains. Our analysis shows that the complex phenomena of canalization and pattern formation in the Drosophila blastoderm can be understood in terms of the qualitative features of the dynamical system. The result confirms the idea that attractors are important for developmental stability and shows a richer variety of dynamical attractors in developmental systems than has been previously recognized

    Redistribution of Actin during Assembly and Reassembly of the Contractile Ring in Grasshopper Spermatocytes

    Get PDF
    Cytokinesis in animal cells requires the assembly of an actomyosin contractile ring to cleave the cell. The ring is highly dynamic; it assembles and disassembles during each cell cleavage, resulting in the recurrent redistribution of actin. To investigate this process in grasshopper spermatocytes, we mechanically manipulated the spindle to induce actin redistribution into ectopic contractile rings, around reassembled lateral spindles. To enhance visualization of actin, we folded the spindle at its equator to convert the remnants of the partially assembled ring into a concentrated source of actin. Filaments from the disintegrating ring aligned along reorganizing spindle microtubules, suggesting that their incorporation into the new ring was mediated by microtubules. We tracked incorporation by speckling actin filaments with Qdots and/or labeling them with Alexa 488-phalloidin. The pattern of movement implied that actin was transported along spindle microtubules, before entering the ring. By double-labeling dividing cells, we imaged actin filaments moving along microtubules near the contractile ring. Together, our findings indicate that in one mechanism of actin redistribution, actin filaments are transported along spindle microtubule tracks in a plus-end–directed fashion. After reaching the spindle midzone, the filaments could be transported laterally to the ring. Notably, actin filaments undergo a dramatic trajectory change as they enter the ring, implying the existence of a pulling force. Two other mechanisms of actin redistribution, cortical flow and de novo assembly, are also present in grasshopper, suggesting that actin converges at the nascent contractile ring from diffuse sources within the cytoplasm and cortex, mediated by spindle microtubules
    corecore