106 research outputs found

    Regulation of plants’ phosphate uptake in common mycorrhizal networks: Role of intraradical fungal phosphate transporters

    Get PDF
    We have recently identified two genes coding for inorganic phosphate transporters (Pht) in sorghum (Sorghum bicolor) and flax (Linum usitatissimum) that were induced in roots colonized by arbuscular mycorrhizal (AM) fungi. Mycorrhizal acquisition of inorganic phosphorus (Pi) was strongly affected by the combination of plant and AM fungal species, but the expression level of these genes coding for AM-inducible Pi transporters did not explain differences in plant phosphorus acquisition where flax and sorghum are sharing a common mycorrhizal network. In the present study, we investigated the possible role of fungal Pi transporters in the regulation of mycorrhizal Pi acquisition by measuring their expression in roots of flax and sorghum. One Pi transporter of Rhizophagus irregularis (RiPT5) showed a positive correlation with mycorrhizal Pi acquisition of sorghum. This indicates that a possible involvement in the regulation of mycorrhizal Pi acquisition. In general, expression of AMF Pi transporters was more related to mycorrhizal Pi acquisition of sorghum than of flax, indicating plant species-specific differences in the regulation of mycorrhizal Pi acquisition

    Organic management and soil health promote nutrient use efficiency

    Full text link
    Introduction: Nitrogen is a key nutrient for plants. Often less than 50% of the applied nitrogen fertilisers is acquired by crops and nitrogen can be easily lost into the environment causing environmental pollution. Thus, to make agriculture more sustainable, it is important to investigate which factors determine nitrogen use efficiency (NUE). We investigated whether NUE was higher in organically managed soils compared to conventionally managed soils. Materials and Methods: To test this, we carried out a pot experiment in a greenhouse using soils from 16 fields. The soils were collected from conventionally (eight fields) or organically managed fields (eight fields). In addition, plants received two different 15N enriched N sources (mineral 15N or an organic fertiliser source, namely 15N enriched plant litter). Plants were harvested at three time points, and growth and nitrogen uptake were assessed at each time point. Results: NUE depended on management type and harvest time and the higher NUE of organically managed soils became more evident towards the second and third harvest. The average NUE at the end of the experiment was 93% and 55% for mineral fertiliser and litter application, respectively. This indicated that mineral fertilisers were immediately acquired by the plants, while nutrients in organic amendments had a lower availability and probably would be supplied later but steadier. Further, NUE was positively linked to microbial biomass, soil organic carbon content, and aggregate size, indicating that enhanced soil quality and soil health leads to a more efficient use of fertilisers. Conclusion: Our results indicate that organic management and soil health promote a more efficient use of nutrients and contribute to a more sustainable agriculture

    No Till and Organic Farming Improve Soil Properties but Reduce Crop Yield Compared to Conventional Farming in a Swiss Farm Network

    Get PDF
    Soils are of vital importance for sustainable food production. In order to maintain or improve soil quality, it is necessary to develop strategies for a sustainable use of soil. Alternative cropping practices such as reduced tillage and improved crop rotation are more and more adopted with the aim of decreasing the impact of agriculture on the environment. However, their on-the-ground impact in Swiss farming systems still has to be assessed. In this study, we quantified the impact of three farming systems (conventional farming, no-till, and organic farming) on plant and soil chemical, biological and physical properties. Our study included 20 fields for each farming system. All selected fields were cultivated with winter wheat the year of sampling. Soil was sampled at four layers, 0-5 cm, 5-20 cm, 20-25 cm, 25-50 cm. The main variables analysed were grain yield, soil nutrient availability, organic carbon stocks, bulk density, aggregation, porosity and soil biology. This was complemented with a comprehensive survey to collect information about cropping practices at field and farm scale, including organic matter inputs, fertilisation, tillage, phytosanitary treatments, and crop rotation.Our results show a significant influence of cropping practices on plant and soil properties. Wheat yield in no till and organic systems was reduced by 10% and 30% compared to conventional systems. Bulk density was higher in no-till than in ploughed fields in the 5-20 cm layer but similar in the subsoil. A strong stratification with depth of nutrients and soil organic carbon was observed in no-till fields. No-till and organic fields showed larger soil aggregates and higher microbial biomass in the surface layer (0-5 cm). Mycorrhizal colonisation of wheat roots was on average 50% higher in organic fields. However, no differences in carbon stock in the 0-20 cm layer was observed and the ratio organic matter / clay shows a high variability (from poor to good) and was not dependent on the farming system.Our results show that an improvement of soil properties can be achieved with alternative cropping practices such as no-till and organic farming, but also depends on the other practices adopted by the farmers, such as input of organic amendments, crop rotation diversification, residue management

    Concerted Evaluation of Pesticides in Soils of Extensive Grassland Sites and Organic and Conventional Vegetable Fields Facilitates the Identification of Major Input Processes

    Full text link
    The intensive use of pesticides and their subsequent distribution to the environment and non-target organisms is of increasing concern. So far, little is known about the occurrence of pesticides in soils of untreated areas─such as ecological refuges─as well as the processes contributing to this unwanted pesticide contamination. In this study, we analyzed the presence and abundance of 46 different pesticides in soils from extensively managed grassland sites, as well as organically and conventionally managed vegetable fields (60 fields in total). Pesticides were found in all soils, including the extensive grassland sites, demonstrating a widespread background contamination of soils with pesticides. The results suggest that after conversion from conventional to organic farming, the organic fields reach pesticide levels as low as those of grassland sites not until 20 years later. Furthermore, the different pesticide composition patterns in grassland sites and organically managed fields facilitated differentiation between long-term persistence of residues and diffuse contamination processes, that is, short-scale redistribution (spray drift) and long-scale dispersion (atmospheric deposition), to offsite contamination

    Soil microbiome signatures are associated with pesticide residues in arable landscapes

    Full text link
    Pesticides are widely applied in agriculture to combat disease, pests, and weeds, leading to long-lasting contamination of agricultural soils with pesticide residues. While classical risk assessment experiments have repeatedly addressed immediate pesticide effects, we employ an ecological approach to investigate how pesticide residues persisting in soils influence the soil microbiome under realistic agricultural conditions. We assessed a wide range of soil characteristics, including the occurrence of 48 widely-used pesticides in 60 fields under conventional, no-tillage and organic management. We then tested which factors best explain soil microbiome traits. Environmental factors, including climate, geography, and soil characteristics, were the soil microbiome's leading drivers. Remarkably, of all management factors, pesticide residues showed the strongest associations with soil microbiome traits, which were even more pronounced than the effects of cropping systems. Pesticide residues were almost exclusively positively associated with the relative abundance of 113 bacterial and 130 fungal taxa, many of them being assigned to taxa of known pesticide degraders. While fungal diversity and abundance were primarily positively associated with pesticide residues, bacterial diversity and abundance of the gene nifH - essential for biological nitrogen fixation - were negatively linked to the concentration of individual pesticide residues. Our results suggest that pesticide residues alter the soil microbiome, with potential long-term implications for the functioning of agricultural soils

    Synergism between production and soil health through crop diversification, organic amendments and crop protection in wheat-based systems

    Get PDF
    One of the critical challenges in agriculture is enhancing yield without compromising its foundation, a healthy environment and, particularly, soils. Hence, there is an urgent need to identify management practices that simultaneously support soil health and production and help achieve environmentally sound production systems.To investigate how management influences production and soil health under realistic agronomic conditions, we conducted an on-farm study involving 60 wheat fields managed conventionally, under no-till or organically. We assessed 68 variables defining management, production and soil health properties. We examined how management systems and individual practices describing crop diversification, fertiliser inputs, agrochemical use and soil disturbance influenced production-quantity and quality-and soil health focusing on aspects ranging from soil organic matter over soil structure to microbial abundance and diversity.Our on-farm comparison showed marked differences between soil health and production in the current system: organic management resulted in the best overall soil health (+47%) but the most significant yield gap (-34%) compared to conventional management. No-till systems were generally intermediate, exhibiting a smaller yield gap (-17%) and only a marginally improved level of soil health (+5%) compared to conventional management. Yet, the overlap between management systems in production and soil health properties was considerably large.Our results further highlight the importance of soil health for productivity by revealing positive associations between crop yield and soil health properties, particularly under conventional management, whereas factors such as weed pressure were more dominant in organic systems.None of the three systems showed advantages in supporting production-soil health-based multifunctionality. In contrast, a cross-system analysis suggests that multifunctional agroecosystems could be achieved through a combination of crop diversification and organic amendments with effective crop protection.Synthesis and applications: Our on-farm study implies that current trade-offs in managing production and soil health could be overcome through more balanced systems incorporating conventional and alternative approaches. Such multifunctionality supporting systems could unlock synergies between vital ecosystem services and help achieve productive yet environmentally sound agriculture supported by healthy soils

    Synergism between production and soil health through crop diversification, organic amendments and crop protection in wheat‐based systems

    Full text link
    One of the critical challenges in agriculture is enhancing yield without compromising its foundation, a healthy environment and, particularly, soils. Hence, there is an urgent need to identify management practices that simultaneously support soil health and production and help achieve environmentally sound production systems. To investigate how management influences production and soil health under realistic agronomic conditions, we conducted an on‐farm study involving 60 wheat fields managed conventionally, under no‐till or organically. We assessed 68 variables defining management, production and soil health properties. We examined how management systems and individual practices describing crop diversification, fertiliser inputs, agrochemical use and soil disturbance influenced production—quantity and quality—and soil health focusing on aspects ranging from soil organic matter over soil structure to microbial abundance and diversity. Our on‐farm comparison showed marked differences between soil health and production in the current system: organic management resulted in the best overall soil health (+47%) but the most significant yield gap (−34%) compared to conventional management. No‐till systems were generally intermediate, exhibiting a smaller yield gap (−17%) and only a marginally improved level of soil health (+5%) compared to conventional management. Yet, the overlap between management systems in production and soil health properties was considerably large. Our results further highlight the importance of soil health for productivity by revealing positive associations between crop yield and soil health properties, particularly under conventional management, whereas factors such as weed pressure were more dominant in organic systems. None of the three systems showed advantages in supporting production‐soil health‐based multifunctionality. In contrast, a cross‐system analysis suggests that multifunctional agroecosystems could be achieved through a combination of crop diversification and organic amendments with effective crop protection. Synthesis and applications: Our on‐farm study implies that current trade‐offs in managing production and soil health could be overcome through more balanced systems incorporating conventional and alternative approaches. Such multifunctionality supporting systems could unlock synergies between vital ecosystem services and help achieve productive yet environmentally sound agriculture supported by healthy soils

    Potential of three microbial bio-effectors to promote maize growth and nutrient acquisition from alternative phosphorous fertilizers in contrasting soils

    Get PDF
    Background Agricultural production is challenged by the limitation of non-renewable resources. Alternative fertilizers are promoted but they often have a lower availability of key macronutrients, especially phosphorus (P). Biological inoculants, the so-called bio-effectors (BEs), may be combined with these fertilizers to improve the nutrient use efficiency. Methods The goal of this study was to assess the potential of three BEs in combination with alternative fertilizers (e.g., composted manure, biogas digestate, green compost) to promote plant growth and nutrient uptake in soils typical for various European regions. Pot experiments were conducted in Czech Republic, Denmark, Germany, Italy, and Switzerland where the same variety of maize was grown in local soils deficient in P in combination with alternative fertilizers and the same set of BEs (Trichoderma, Pseudomonas, and Bacillus strains). Common guidelines for pot experiment implementation and performance were developed to allow data comparison, and soils were analyzed by the same laboratory. Results Efficiency of BEs to improve maize growth and nutrient uptake differed strongly according to soil properties and fertilizer combined. Promising results were mostly obtained with BEs in combination with organic fertilizers such as composted animal manures, fresh digestate of organic wastes, and sewage sludge. In only one experiment, the nutrient use efficiency of mineral recycling fertilizers was improved by BE inoculation. Conclusions These BE effects are to a large extent due to improved root growth and P mobilization via accelerated mineralization

    Evaluating The Strengths And Weakness Of Conventional, No-Till And Organic Cropping Systems: An Assessment Of Yield, Soil Protection And Environmental Performance

    Get PDF
    In a comprehensive study on 60 observed fields in organic, conventional and no-till cropping, a coherent set of different indicators for cropping management, crop performance and soil physical, chemical and biological properties has been developed to describe and assess these systems. The high yield level in conventional, the soil surface protection and diversity of crops in no-till, and the higher soil organic carbon content and the complexity of root-associated microbial networks in organic systems underline the areas for improvement to be considered for the further development of sustainable cropping systems
    • 

    corecore