203 research outputs found

    A varved lake sediment record of <sup>10</sup>Be solar activity proxy for the Lateglacial-Holocene transition

    Get PDF
    Solar modulated variations in cosmogenic radionuclide production provide both information on past changes in the activity of the Sun and a global synchronization tool. However, to date the use of cosmogenic radionuclides for these applications is almost exclusively based on 10Be records from ice cores and 14C time-series from tree rings, all including archive-specific limitations. We present the first 10Be record from annually laminated (varved) lake sediments for the Lateglacial-Holocene transition from Meerfelder Maar. We quantify environmental influences on the catchment and, consequently, 10Be deposition using a new approach based on regression analyses between our 10Be record and environmental proxy time-series from the same archive. Our analyses suggest that environmental influences contribute to up to 37% of the variability in our 10Be record, but cannot be the main explanation for major 10Be excursions. Corrected for these environmental influences, our 10Be record is interpreted to dominantly reflect changes in solar modulated cosmogenic radionuclide production. The preservation of a solar production signal in 10Be from varved lake sediments highlights the largely unexplored potential of these archives for solar activity reconstruction, as global synchronization tool and, thus, for more robust paleoclimate studies

    Simulated radiocarbon cycle revisited by considering the bipolar seesaw and benthic 14C data

    Get PDF
    Carbon cycle models used to calculate the marine reservoir age of the non-polar surface ocean (called Marine20) out of IntCal20, the compilation of atmospheric C, have so far neglected a key aspect of the millennial-scale variability connected with the thermal bipolar seesaw: changes in the strength of the Atlantic meridional overturning circulation (AMOC) related to Dansgaard/Oeschger and Heinrich events. Here we implement such AMOC changes in the carbon cycle box model BICYCLE-SE to investigate how model performance over the last 55 kyr is affected, in particular with respect to available 14C and CO2 data. Constraints from deep ocean 14C data suggest that the AMOC in the model during Heinrich stadial 1 needs to be highly reduced or even completely shutdown. Ocean circulation and sea ice coverage combined are the processes that almost completely explain the simulated changes in deep ocean 14C age, and these are also responsible for a glacial drawdown of ∼60 ppm of atmospheric CO2. We find that the implementation of abrupt reductions in AMOC during Greenland stadials in the model setup that was previously used for the calculation of Marine20 leads to differences of less than ±100 14C yrs. The representation of AMOC changes therefore appears to be of minor importance for deriving non-polar mean ocean radiocarbon calibration products such as Marine20, where atmospheric carbon cycle variables are forced by reconstructions. However, simulated atmospheric CO2 exhibits minima during AMOC reductions in Heinrich stadials, in disagreement with ice core data. This mismatch supports previous suggestions that millennial-scale changes in CO2 were probably not driven directly by the AMOC, but rather by biological and physical processes in the Southern Ocean and by contributions from variable land carbon storage

    A simple method of purifying authigenic 10Be from sediments for AMS-analysis

    Get PDF
    The cosmogenic radionuclide 10Be is used for a variety of applications, its analysis however requires laborious purification methods. We developed a simple purification protocol for Be from sediment samples that works without strongly hazardous chemicals or time consuming and expensive ion exchange columns. The combination of hydroxide precipitations and precipitation in NaHCO3 was compared to an established protocol of hydroxide precipitations and ion exchange columns. The new method has a slightly lower Be-yield and purity of the resulting samples. However, this does not have a significant influence on performance during AMS-measurement where both methods performed equally well. The avoidance of column chromatography reduces sample preparation costs and space requirements in the lab allowing for more samples to be prepared simultaneously

    The WAIS Divide deep ice core WD2014 chronology - Part 2: Annual-layer counting (0-31 ka BP)

    Get PDF
    International audienceWe present the WD2014 chronology for the upper part (0–2850 m; 31.2 ka BP) of the West Antarctic Ice Sheet (WAIS) Divide (WD) ice core. The chronology is based on counting of annual layers observed in the chemical, dust and electrical conductivity records. These layers are caused by seasonal changes in the source, transport, and deposi-tion of aerosols. The measurements were interpreted manually and with the aid of two automated methods. We validated the chronology by comparing to two high-accuracy, absolutely dated chronologies. For the Holocene, the cos-mogenic isotope records of 10 Be from WAIS Divide and 14 C for IntCal13 demonstrated that WD2014 was consistently accurate to better than 0.5 % of the age. For the glacial period, comparisons to the Hulu Cave chronology demonstrated that WD2014 had an accuracy of better than 1 % of the age at three abrupt climate change events between 27 and 31 ka. WD2014 has consistently younger ages than Green-land ice core chronologies during most of the Holocene. For Published by Copernicus Publications on behalf of the European Geosciences Union. 770 M. Sigl et al.: The WAIS Divide deep ice core WD2014 chronology the Younger Dryas–Preboreal transition (11.595 ka; 24 years younger) and the Bølling–Allerød Warming (14.621 ka; 7 years younger), WD2014 ages are within the combined uncertainties of the timescales. Given its high accuracy, WD2014 can become a reference chronology for the Southern Hemisphere, with synchronization to other chronologies feasible using high-quality proxies of volcanism, solar activity , atmospheric mineral dust, and atmospheric methane concentrations

    Precise dating of deglacial Laptev Sea sediments via 14C and authigenic 10Be/9Be – assessing local 14C reservoir ages

    Get PDF
    Establishing accurate chronological frameworks is imperative for reliably identifying lead-lag dynamics within the climate system and enabling meaningful inter-comparisons across diverse paleoclimate proxy records over long time periods. Robust age models provide a solid temporal foundation for establishing correlations between paleoclimate records. One of the primary challenges in constructing reliable radiocarbon-based chronologies in the marine environment is to determine the regional marine radiocarbon reservoir age correction. Calculations of the local marine reservoir effect (ΔR) during deglaciation can be acquired using 14C-independent dating methods, such as synchronization with other well-dated archives. The cosmogenic radionuclide 10Be offers such a synchronization tool. Its atmospheric production rate is affected by the global modulations driven by fluctuations in the cosmic ray influx, caused by variations in solar activity and geomagnetic field strength. The resulting fluctuations in the meteoric deposition of 10Be are preserved in sediments and ice cores and can thus be utilized for their synchronization. In this study, for the first time, we use the authigenic 10Be/9Be record of a Laptev Sea sediment core for the period 8-14 kyr BP and synchronize it with the 10Be records from absolutely dated ice cores. Based on the resulting absolute chronology, a benthic ΔR value of +345±60 14C years was estimated for the Laptev Sea, which corresponds to a marine reservoir age of 848±90 14C years. The ΔR value was used to refine the age-depth model for core PS2458-4, establishing it as a reference chronology for the Laptev Sea. We also compare the calculated ΔR value with modern estimates from the literature and discuss its implications for the age-depth model

    Solar activity of the past 100 years inferred from 10Be in ice cores – implications for long-term solar activity reconstructions

    Get PDF
    Differences between 10Be records from Greenland and Antarctica over the last 100 years have led to different conclusions about past changes in solar activity. The reasons for this disagreement remain unresolved. We analyze a seasonally resolved 10Be record from a firn core (NEEM ice core project) in Northwestern Greenland for 1887-2002. By comparing the NEEM data to 10Be data from the NGRIP and Dye3 ice cores, we find that the Dye3 data after 1958 are significantly lower. These low values lead to a normalization problem in solar reconstructions when connecting 10Be variations to modern observations. Excluding these data strongly reduces the differences between solar reconstructions over the last 2000 years based on Greenland and Antarctic 10Be data. Furthermore, 10Be records from polar regions and group sunspot numbers do not support a substantial increase in solar activity for the 1937-1950 period as proposed by previous extensions of the neutron monitor data.This article is protected by copyright. All rights reserved

    Rapid global ocean-atmosphere response to Southern Ocean freshening during the last glacial

    Get PDF
    This is the final version of the article. Available from Springer Nature via the DOI in this record.Contrasting Greenland and Antarctic temperatures during the last glacial period (115,000 to 11,650 years ago) are thought to have been driven by imbalances in the rates of formation of North Atlantic and Antarctic Deep Water (the 'bipolar seesaw'). Here we exploit a bidecadally resolved (14)C data set obtained from New Zealand kauri (Agathis australis) to undertake high-precision alignment of key climate data sets spanning iceberg-rafted debris event Heinrich 3 and Greenland Interstadial (GI) 5.1 in the North Atlantic (~30,400 to 28,400 years ago). We observe no divergence between the kauri and Atlantic marine sediment (14)C data sets, implying limited changes in deep water formation. However, a Southern Ocean (Atlantic-sector) iceberg rafted debris event appears to have occurred synchronously with GI-5.1 warming and decreased precipitation over the western equatorial Pacific and Atlantic. An ensemble of transient meltwater simulations shows that Antarctic-sourced salinity anomalies can generate climate changes that are propagated globally via an atmospheric Rossby wave train.A challenge for testing mechanisms of past climate change is the precise correlation of palaeoclimate records. Here, through climate modelling and the alignment of terrestrial, ice and marine (14)C and (10)Be records, the authors show that Southern Ocean freshwater hosing can trigger global change.This work was funded by the Australian Research Council (FL100100195, DP170104665 and SR140300001) and the Natural Environment Research Council (NE/H009922/1 and NE/H007865/1)
    corecore