View metadata, citation and similar papers at core.ac.uk

brought to you by **CORE**

1	A varved lake sediment record of the ¹⁰ Be solar activity proxy for the
2	Lateglacial-Holocene transition
3	Markus Czymzik ^{a,*} , Florian Adolphi ^a , Raimund Muscheler ^a , Florian Mekhaldi ^a , Celia Martin-
4	Puertas ^b , Ala Aldahan ^c , Göran Possnert ^d , Achim Brauer ^b
5	

- ^a Department of Geology, Quaternary Sciences, Lund University, 22362 Lund, Sweden
- ⁷ ^b GFZ-German Research Centre for Geosciences, Section 5.2 Climate Dynamics and Landscape
- 8 Evolution, 14473 Potsdam, Germany
- ^c Department of Geology, United Arab Emirates University, 15551 Al Ain, UAR
- ^d Tandem Laboratory, Uppsala University, 75120 Uppsala, Sweden
- *Corresponding author. Tel.: 0046 46 222 1729. Email address: markus.czymzik@geol.lu.se (M.
 Czymzik).
- 13
- 14 **Keywords:** ¹⁰Be, varved lake sediments, solar activity, time-scales

15 Highlights:

- ¹⁰Be record from varved lake sediments covering the Lateglacial-Holocene transition
- 17 New approach quantifies environmental influences on ¹⁰Be deposition
- 18 Indicates potential of ¹⁰Be in varved lake sediments for solar activity reconstruction
- 19 Indicates potential of ¹⁰Be in varved lake sediments as synchronization tool
- 20
- 21 22
- 22
- 23
- 24

25 Abstract

Solar modulated variations in cosmogenic radionuclide production provide both information on 26 past changes in the activity of the Sun and a global synchronization tool. However, to date the 27 use of cosmogenic radionuclides for these applications is almost exclusively based on ¹⁰Be 28 records from ice cores and ¹⁴C time-series from tree rings, all including archive-specific 29 limitations. We present the first ¹⁰Be record from annually laminated (varved) lake sediments for 30 the Lateglacial-Holocene transition from Meerfelder Maar. We quantify environmental 31 influences on the catchment and, consequently, ¹⁰Be deposition using a new approach based on 32 regression analyses between our ¹⁰Be record and environmental proxy time-series from the same 33 archive. Our analyses suggest that environmental influences contribute to up to 37 % of the 34 variability in our ¹⁰Be record, but cannot be the main explanation for major ¹⁰Be excursions. 35 Corrected for these environmental influences, our ¹⁰Be record is interpreted to dominantly reflect 36 changes in solar modulated cosmogenic radionuclide production. The preservation of a solar 37 production signal in ¹⁰Be from varved lake sediments highlights the largely unexplored potential 38 of these archives for solar activity reconstruction, as global synchronization tool and, thus, for 39 more robust paleoclimate studies. 40

41

42 1. Introduction

Changes in solar activity have been suggested to influence past and modern climates (Gray et al., 43 2010). An accurate knowledge of changes in the activity of the Sun is crucial for understanding 44 solar influences on climate (Gray et al., 2010). Before satellite measurements of solar irradiation 45 and the observation of sunspots, cosmogenic radionuclides like ¹⁰Be in polar ice cores and ¹⁴C in 46 tree rings provide key information on changes in solar activity (Beer et al., 1990; Muscheler et 47 al., 2007; Vonmoos et al., 2006). ¹⁰Be is produced in the upper atmosphere (about $\frac{2}{3}$ in the 48 stratosphere and $\frac{1}{3}$ in the troposphere) as by-product of cascades of nuclear reactions induced by 49 incident high-energy galactic cosmic rays (Lal and Peters, 1967). The flux of these galactic 50 51 cosmic rays towards the atmosphere is modulated by solar activity variations through varying heliomagnetic shielding (Lal and Peters, 1967). During periods of higher solar activity and 52 stronger heliomagnetic shielding, less galactic cosmic rays reach the atmosphere and less ¹⁰Be is 53

produced. Further ¹⁰Be production rate changes introduced by the varying geomagnetic field
strength become most likely significant only on >500-year time-scales (Snowball and Muscheler,
2007).

In addition to the atmospheric production, available cosmogenic radionuclide records are to a 57 varying degree affected by archive-specific so-called system effects: Changing exchange rates 58 between Earth's carbon reservoirs add non-production variations to the atmospheric ¹⁴C record 59 (Muscheler et al., 2004). Theoretically, this effect can be accounted for by using a carbon cycle 60 model to calculate the atmospheric ¹⁴C production. However, past exchanges between carbon 61 reservoirs are difficult to quantify, particularly in times of abrupt climate changes (Köhler et al., 62 2006). While ¹⁰Be is in comparison to ¹⁴C geochemically more stable and thus in principle a 63 more direct indicator of the production rate, inhomogeneous tropospheric mixing and 64 precipitation during the short about 1 to 2-year atmospheric residence time (Raisbeck et al., 65 1981) cause spatially varying ¹⁰Be deposition patterns (Heikkilä et al., 2013; Pedro et al., 2012). 66 Further uncertainties in available ice core ¹⁰Be records arise from the assumed depositional 67 mode. In case of wet deposition ¹⁰Be concentrations, and in case of dry deposition ¹⁰Be fluxes 68 would best reflect the atmospheric production signal (Alley et al., 1995; Delaygue and Bard, 69 70 2011). However, no single depositional mode correctly reflects reality and the dominant mode of deposition can change over time (Alley et al., 1995). Exploring the potential of ¹⁰Be in new 71 archives like varved lake sediments offers a complementary approach for tracking the 72 atmospheric ¹⁰Be production signal and, thereby, could improve our knowledge on past changes 73 74 in solar activity.

To date, the potential of ¹⁰Be in varved lake sediments is largely unexplored. Chronologies based 75 on varve counting enable the establishment of ¹⁰Be records at a chronological precision that is 76 comparable to that for ice cores or tree rings. First calibration studies of annually resolved ¹⁰Be 77 time-series from three varved lake sediment archives yielded a correlation between changes in 78 ¹⁰Be and solar activity during the 11-year solar 'Schwabe' cycle (Berggren et al., 2010; Czymzik 79 80 et al., 2015). However, further correspondences with proxy time-series also suggest that environmental factors like e.g. varying organic matter contents and sediment redeposition may 81 influence ¹⁰Be deposition in these lakes (Czymzik et al., 2015). Therefore, more detailed 82 investigations are needed to improve the use of ¹⁰Be in varved lake sediments as indicator of the 83

atmospheric production rate and, thereby, solar activity. In addition, detecting the common atmospheric radionuclide production signal in varved lake sediments provides the opportunity for continuous climate-independent synchronizations to cosmogenic radionuclide records worldwide. Such a synchronization could e.g. contribute to the discussion on the unresolved rapid chronological shift between the GICC05 ice core and ¹⁴C time-scales around the Younger Dryas (Adolphi and Muscheler, 2016; Muscheler et al., 2014).

The varved Meerfelder Maar (MFM) lake sediment record is a well-established 90 paleoenvironmental archive, particularly for the Lateglacial-Holocene transition (Brauer et al., 91 2008, 1999; Engels et al., 2015; Lane et al., 2015; Lücke and Brauer, 2004; Rach et al., 2014). 92 Increased ¹⁰Be accumulation rates coinciding with an interval of thicker varves enabled the 93 linkage of a grand solar minimum about 2800 years ago with a synchronous change in regional 94 atmospheric circulation in times of moderate climate variations (Martin-Puertas et al., 2012b). 95 Here, we present the first lake sediment record of ${}^{10}Be$ concentrations (${}^{10}Be_{con}$) at ~20-year 96 resolution covering the Lateglacial-Holocene transition (11310 to 13130 varve a BP; i.e. before 97 98 AD 1950) from MFM. A novel methodological approach based on complementary environmental proxy time-series from the same archive allows us to systematically investigate 99 the depositional mechanisms and, thereby, track solar induced changes in the atmospheric ¹⁰Be 100 production rate. Spanning the early Holocene, Younger Dryas and late Allerød, our record 101 enables us to test the robustness of our results on ¹⁰Be deposition in MFM sediments under 102 varying sedimentary regimes and climatic boundary conditions. 103

104

105 **2. Study site**

Meerfelder Maar is situated within the Westeifel Volcanic field (50°6'N, 6°45'E), at an elevation
of 334 m a.s.l. (Fig. 1). The contemporary lake has a depth of 18 m and a surface area of 0.25 km², covering about ¹/₃ of the about 150 m deep crater surface (Fig. 1). Meerfelder Maar
sediments are continuously varved between ~1500 and 14230 varve a BP (Brauer et al., 2000).
Varves during the Holocene comprise couples of diatom and detrital sub-layers. Within the
Lateglacial, snowmelt varves (late Younger Dryas), clastic-organic varves (early Younger Dryas)
and Fe-rich siderite varves (late Allerød) have been formed (Brauer et al., 1999; Martin-Puertas

- et al., 2012a). Varve formation in MFM is sensitive to North Atlantic climate variations (Brauer
 et al., 2008; Martin-Puertas et al., 2012b)
- 115
- 116 **3. Methods**
- 117 *3.1. Sediment sub-sampling*

Bulk sediment samples for ¹⁰Be measurements were extracted from composite profile MFM09 (Lane et al., 2015; Martin-Puertas et al., 2012a) at about 20-year resolution, excluding the Laacher See Tephra. Upper and lower sample boundaries were determined using macroscopic varved dated marker layers (Brauer et al., 2000; Lane et al., 2015).

122 *3.2.* ¹⁰Be extraction and AMS measurements

After drying and homogenizing, 0.5 mg ⁹Be carrier was added to 0.5 g sediment material and Be 123 leached overnight with 7.5 ml 8 M HCl at 60°C. The solution was subsequently filtered to 124 remove the undissolved fractions. Further addition of NH₃, EDTA and H₂SO₄ induced the 125 precipitation of metal hydroxides, other metals and silicates which were again separated from the 126 solution by filtering (Berggren et al., 2010). The remaining solution was then passed through ion 127 128 exchange columns (Bio-Rad Polyprep Prefilled Chromatography Columns, 100-200 mesh, hydrogen form) in which Be was retained (Berggren et al., 2010). Be was extracted from the 129 130 columns through the addition of 7 ml 4 M HCl, and Be(OH)₂ precipitated in a warm water bath using NH₃ (25 %, Suprapur). The samples were washed and dehydrated three times with warm 2 131 132 % NH₄NO₃ and oxidized to BeO by heating to 600°C. Finally, the samples were mixed with Nb and pressed into sample holders. AMS measurements of BeO were performed at the Uppsala 133 Tandem Laboratory using the reference standard NIST SRM 4325 ($^{10}Be/^{9}Be = 2.68*10^{-11}$) 134 (Berggren et al., 2010). 135

136 *3.3. Environmental proxy time-series*

137 Geochemical, total organic carbon (TOC) and sediment accumulation rate (SAR) datasets at the 138 about 20-year resolution of the 10 Be data were constructed from available higher resolution time-139 series. The element composition was measured on cleaned sediment core halves at 200 µm 140 resolution using an ITRAX X-ray fluorescence (µ-XRF) scanner (Martin-Puertas et al., 2012a). Measured element intensities were centered log-ratio (clr) transformed to minimize the effects of 141 142 varying sediment properties (Weltje and Tjallingii, 2008). TOC contents of a continuous series of sediment samples were determined from 4 mg decalcified sample aliquots in Ag-capsules 143 using an EA3000-CHNS elemental analyzer. The SAR (g cm⁻² year⁻¹) is the product of varve 144 thickness (cm year⁻¹) and dry density (g cm⁻³), reflecting a mixture of changes in the deposited 145 146 sediment volume and composition (Zolitschka, 1998). Microscopic varve thickness measurements were performed on series of overlapping petrographic thin-sections (Brauer et al., 147 2000; Lane et al., 2015; Martin-Puertas et al., 2012a). Dry density was determined by weighing 148 freeze-dried 1 cm³ sediment samples. 149

150 *3.4. Chronology*

All investigated time-series are on the MFM2015 time-scale, established by means of varve counting and fixed to the absolute time-scale using tephrochronology and radiocarbon dating (for details see: Brauer et al., 2000, 1999; Lane et al., 2015; Martin-Puertas et al., 2012a). The Vedde Ash in the MFM2015 (12140 \pm 40 varve a BP) (Lane et al., 2013) and GICC05 time-scales (12121 \pm 114 a BP) (Rasmussen et al., 2006), located about midway through the investigated MFM sediment interval, provides an independent tie-point for a comparison of the MFM ¹⁰Be record to those from the GRIP and GISP2 ice cores.

158 *3.5. Statistical significance*

Statistical significances of correlations between the ¹⁰Be_{con} record and environmental proxy time-159 160 series were assessed using a non-parametric random-phase test (Ebisuzaki, 1997). The test takes into account the effects of autocorrelation present in the time-series (Ebisuzaki, 1997). First, 161 10000 versions of the 10 Be_{con} record were computed that have an identical frequency spectrum as 162 the original record, but randomly differ in the phase of each frequency. The statistical 163 significances of the correlations between the ¹⁰Be record and the environmental proxy time-164 series were then determined by replacing the original ¹⁰Be_{con} record with its phase shifted 165 surrogates and calculating the probability distribution of the correlations that occur by chance. 166

167

168 **4. Results**

¹⁰Be_{con} were measured in 96 sediment samples from a 158 cm long section (725 to 882 cm 169 composite depth) of composite profile MFM09 (Lane et al., 2015; Martin-Puertas et al., 2012a) 170 (Fig. 2). Mean ${}^{10}\text{Be}_{con}$ is 2.7*10⁸ atoms g⁻¹. ${}^{10}\text{Be}_{con}$ vary distinctly between 2 and 4.7*10⁸ atoms 171 g⁻¹ (mean 3*10⁸ atoms g⁻¹) from 820 to 882 cm composite depth and depict smaller variability 172 between 1.8 and $3.3*10^8$ atoms g⁻¹ (mean $2.5*10^8$ atoms g⁻¹) from 725 to 817 cm composite 173 depth (Fig. 2). Mean AMS measuring uncertainty is $0.1*10^8$ atoms g⁻¹. A series of 6 MFM 174 sediment samples yielded ${}^{10}\text{Be}_{con}$ up to $45.9*10^8$ atoms g⁻¹, distinguished from the remaining 175 record by their exceptionally high ¹⁰Be concentrations (up to a factor of 17 higher than the mean 176 of the remaining ${}^{10}\text{Be}_{con}$ record). Since (i) we did not observe coinciding distinct changes in 177 sediment accumulation or composition and, (ii) more importantly, these anomalous high values 178 were not replicated by ¹⁰Be measurements in sediment samples from the same core position, 179 these six data points were treated as measurement outliers and excluded from the analyses. Due 180 to the 1.387 \pm 0.012 Ma long half-life of ¹⁰Be (Korschinek et al., 2010) the effect of radioactive 181 decay is negligible in our about 2000-year long ¹⁰Be record from the Lateglacial-Holocene 182 transition. 183

184

185 5. Discussion

186 5.1. Environmental effects on $^{10}Be_{con}$ deposition

187 Regional environmental variations during the Lateglacial-Holocene transition modify catchment 188 processes and might, therefore, bias the atmospheric ¹⁰Be production signal in lake sediment 189 archives. Comparing the MFM ¹⁰Be_{con} record to sedimentological and geochemical proxy time-190 series from the same archive allows us to evaluate these effects.

191 Changing sediment accumulation rates (SAR) might influence ¹⁰Be_{con} in MFM sediments by

- diluting them more (higher SAR) or less (lower SAR) (Berggren et al., 2010). This is potentially
- reflected by a significant negative correlation between ${}^{10}Be_{con}$ and SAR (r=-0.39, p<0.01) (Figs.
- 194 2 and 3). However, despite this correlation, major changes in SAR (e.g. around 750, 800 and 851
- 195 cm composite depth) are not reflected by the MFM ${}^{10}Be_{con}$ record (Fig. 2).

Relationships with ¹⁰Be_{con} are further noticeable for the element Ti and the Si/Ti ratio, reflecting 196 main sediment components in MFM during the Lateglacial-Holocene transition (Brauer et al., 197 198 1999) (Figs. 2 and 3). Ti is indicative of detrital material transported from the catchment into the lake (Martin-Puertas et al., 2012a) and exhibits a significant negative correlation with ¹⁰Be_{con} 199 (r=-0.39, p<0.01) (Fig. 2). However, neither major rises (e.g. at 802 cm composite depth) nor 200 drops in Ti (e.g. at 748 cm composite depth) are paralleled by major shifts in the ${}^{10}Be_{con}$ record 201 202 (Fig. 2). The Si/Ti ratio is interpreted as an indicator of diatom abundances since Si in MFM sediments represents both detrital input and diatom deposition, while Ti is related to detrital 203 influx only (Martin-Puertas et al., 2012a) (Fig. 2). Like Ti, the Si/Ti ratio is significantly 204 correlated with ${}^{10}\text{Be}_{con}$ (r=0.17, p=0.07), but major shifts in this proxy (e.g. around 728 and 802) 205 cm composite depth) do not correspond to major changes in ${}^{10}Be_{con}$ (Fig. 2). 206

Further uncertainties in ¹⁰Be production time-series from lake sediments could be caused through 207 the preferential binding of ¹⁰Be to a particular sediment fraction. It was suggested that Fe and 208 organic matter are favorable carriers of ¹⁰Be (Mann et al., 2012; Willenbring and von 209 Blanckenburg, 2010). High Fe values from 857 to 877 cm composite depth reflect the deposition 210 of siderite varves in MFM, indicative of anoxic bottom water conditions (Fig. 2) (Brauer et al., 211 2008). ¹⁰Be_{con} and Fe exhibit a significant correlation in the investigated sediments (r=0.32, 212 p<0.01) (Figs. 2 and 3). However, even though the major drop in Fe at 855 cm composite depth 213 coincides with a distinct decrease in ${}^{10}\text{Be}_{con}$, other shifts in Fe (e.g. at 740, 760 and 832 cm 214 composite depth) are not reflected in the ¹⁰Be_{con} record (Fig. 2). These results suggest that the 215 amplitudes of the variations in our ¹⁰Be_{con} record caused by a potential preferential binding to Fe 216 are likely small. One possible reason for this small influence might be that iron cycling in lakes 217 occurs predominantly at the water-sediment interface (Davison, 1993), while ¹⁰Be scavenging 218 likely takes place throughout the entire water column. 219

Positive correlations point to a preferential binding of ¹⁰Be to organic material in previously measured annually resolved ¹⁰Be time-series from recent varved sediments of two central European lakes (Czymzik et al., 2015). While mean TOC concentrations in these two lake sediments are about 10 %, they are generally lower in the investigated MFM sediments (mean 4.5 %), with only one short peak reaching about 10 % at 855 cm composite depth (Fig. 2). Nevertheless, ¹⁰Be_{con} and TOC are significantly correlated in the investigated MFM sediment

record (r=0.44, p<0.01) (Fig. 2). However, except for the mentioned peak around 855 cm 226 composite depth, other major shifts in TOC (e.g. at 748 and 798 cm composite depth) do not 227 correspond to distinct changes in the ¹⁰Be_{con} record (Fig. 2). Therefore, potential effects of a 228 preferential binding to TOC likely introduce minor variations and do not obscure major 229 excursions in our ¹⁰Be_{con} record. A reason for this weak linkage to ¹⁰Be_{con} might be the low TOC 230 concentrations in the investigated MFM sediment interval (Fig. 2). Small effects of a preferential 231 binding of ¹⁰Be to TOC and Fe are in agreement with a review study concluding that no single 232 constituent dominates the distribution of ¹⁰Be in soils (Graly et al., 2010). 233

Mean ${}^{10}\text{Be}_{con}$ are about 10 % higher during the early Holocene (2.8*10⁸ atoms g⁻¹) and about 20 234 % higher during the late Allerød ($3*10^8$ atoms g⁻¹), compared to the Younger Dryas ($2.5*10^8$ 235 atoms g^{-1}) (Fig. 2). Varying mean ¹⁰Be_{con} during the three climate periods could be explained by 236 changes in tropospheric mixing and precipitation (Heikkilä et al., 2013) and catchment processes 237 (Czymzik et al., 2015), but also by different atmospheric ¹⁰Be production rates, all potentially 238 modifying ¹⁰Be deposition at MFM. However, mean ¹⁰Be_{con} changes during these three climate 239 periods do not exceed 20 %, compared to the about 90 % variations during major ¹⁰Be_{con} 240 excursions (Fig. 2). 241

To summarize, comparing the MFM ¹⁰Be_{con} record to proxy time-series from the same archive 242 suggests that environmental influences on the catchment cannot be the main explanation for 243 major ¹⁰Be_{con} excursions in the investigated MFM sediments (e.g. around 750, 820, 855 and 875 244 cm composite depth) (Fig. 2). Nevertheless, significant correlations between ¹⁰Be_{con} and SAR, 245 Ti, Si/Ti ratio, TOC and Fe point to influences of varying catchment conditions on ¹⁰Be_{con} 246 deposition in our archive (Figs. 2 and 3). In the following section we aim at quantifying and 247 correcting for these influences on ¹⁰Be_{con} deposition in order to extract a regional atmospheric 248 input signal. 249

250 5.2. Regional atmospheric ¹⁰Be input

In an attempt to extract a regional atmospheric input signal (${}^{10}\text{Be}_{con}$ corrected for the effects of environmental influences on catchment conditions and ${}^{10}\text{Be}$ deposition), a two-step procedure was applied to the MFM ${}^{10}\text{Be}_{con}$ record. First, simple linear regressions were calculated between the MFM ${}^{10}\text{Be}_{con}$ record and the significantly correlated proxy time-series SAR, Ti, Si/Ti ratio, TOC and Fe separately, to determine the likely environmental bias ($^{10}Be_{bias}$). Second, the resulting $^{10}Be_{bias}$ time-series were subtracted from the original MFM $^{10}Be_{con}$ record to approximate the regional atmospheric ^{10}Be input ($^{10}Be_{atmosphere}$) (Fig. 4a). The equations are as follows:

259 (1) ${}^{10}Be_{bias} = a + x * proxy$

260 (2)
$${}^{10}\text{Be}_{\text{atmosphere}} = ({}^{10}\text{Be}_{\text{con}} - {}^{10}\text{Be}_{\text{bias}} + \text{mean} ({}^{10}\text{Be}_{\text{con}})) / \text{mean}({}^{10}\text{Be}_{\text{con}})$$

For evaluating the possibly largest environmental bias on 10 Be deposition, we further calculated a 10 Be_{atmosphere} time-series performing a multiple regression analysis between our 10 Be_{con} record and all proxy time-series with a significant correlation (Fig. 4a). The final 10 Be_{atmosphere} curve includes only corrections from proxy time-series with a significant contribution (>90 % level: Si/Ti ratio, TOC) to the final multiple regression (Table 1).

All six calculated ¹⁰Be_{atmosphere} time-series depict similar multi-decadal variability and trends, 266 compared to the original MFM ¹⁰Be_{con} record (Fig. 4a). Changing environmental conditions 267 (¹⁰Be_{bias}) explain between 8 and 29 % (mean 18 %) of the variance when the ¹⁰Be_{con} record is 268 corrected using the individual SAR, Ti, Si/Ti ratio, TOC and Fe time-series (Table 1). Corrected 269 using all significantly correlated proxy time-series, ¹⁰Be_{bias} explains 37 % of the variations in the 270 ¹⁰Be_{con} record (Fig. 4a, Table 1). The amplitude of the older part of the ¹⁰Be_{con} peak from 12670 271 to 12770 varve a BP is broadly unchanged when ¹⁰Be_{atmosphere} is calculated using SAR, Ti, Si/Ti 272 ratio and Fe, but reduced by about 30 % when ¹⁰Be_{atmosphere} is calculated using TOC and all 273 significantly correlated proxy time-series (Fig. 4a). 274

To test the robustness of these corrections, we calculated the six ${}^{10}\text{Be}_{\text{atmosphere}}$ time-series separately for the early Holocene, Younger Dryas and late Allerød (Fig. 4b). The calculated ${}^{10}\text{Be}_{\text{atmosphere}}$ time-series for the individual climate periods resemble those for the complete record (Fig. 4). This test illustrates that the corrections of the ${}^{10}\text{Be}_{\text{con}}$ record are not influenced by varying environmental conditions and sedimentary regimes connected to the three climate periods.

To conclude, in our analyses environmental influences on catchment conditions account for up to 37 % of the variability in the MFM ${}^{10}Be_{con}$ record. Corrected for these influences, the resulting ${}^{10}Be_{atmosphere}$ time-series likely reflect a regional atmospheric input signal. In the following section we will discuss connections between the MFM ¹⁰Be_{atmosphere} time-series and changes in solar activity inferred from other cosmogenic radionuclide records as well as the effects of inhomogeneous tropospheric mixing and precipitation, which are presumably not recorded by the MFM proxy time-series.

288 5.3. Solar modulated ¹⁰Be production

For deciphering solar modulated changes in ¹⁰Be production, we compare a composite (to reduce 289 noise) of the six MFM ¹⁰Be_{atmosphere} time-series to ¹⁰Be fluxes from the GRIP (Adolphi et al., 290 2014) and GISP2 ice cores (Finkel and Nishiizumi, 1997) and ¹⁴C production rates derived from 291 tree rings (Muscheler et al., 2014) (Fig. 5). A 500-year high-pass filter was applied to the time-292 293 series to minimize the effects of the varying geomagnetic field on cosmogenic radionuclide production (Snowball and Muscheler, 2007). This filter also reduces system effects that are 294 potentially present in the ¹⁰Be and ¹⁴C records (Adolphi and Muscheler, 2016). The shared 295 variance of the radionuclide records can be considered as an indicator of the solar modulated 296 297 cosmogenic radionuclide production rate (Muscheler et al., 2007). Maximum differences between the individual ¹⁰Be_{atmosphere} time-series at each point were used as uncertainty ranges 298 (Fig. 5). In addition, bandpass filtering was applied to the cosmogenic radionuclide records to 299 focus on the frequency ranges of the solar Gleissberg (frequencies between 1/75 and 1/100 years 300 ¹) and De Vries (frequencies between 1/180 and 1/230 years⁻¹) cycles (Fig. 6). The Vedde Ash 301 dated to 12140 ± 40 varve a BP in the MFM2015 and 12121 ± 114 a BP in the GICC05 time-302 scale (Lane et al., 2013; Rasmussen et al., 2006) indicates no age-scale difference between the 303 MFM and GRIP/GISP2 ice core records, within the dating uncertainties (Fig. 5). 304

Most distinctive features of the MFM ¹⁰Be_{atmosphere} composite are three peaks centered at 12400, 305 12750 and 13050 varve a BP and a minimum around 11650 varve a BP (Fig. 5). All these 306 features are also visible in the ¹⁴C production rate and GRIP and GISP2 ¹⁰Be flux records 307 suggesting that they are related to common solar modulated radionuclide production changes 308 (Fig. 5). Differences between the ¹⁰Be records from MFM and the ice cores might be explained 309 by inhomogeneous tropospheric mixing and precipitation causing differing ¹⁰Be deposition 310 patterns at the sites of MFM and the ice cores (McHargue and Damon, 1991). Differences 311 between the MFM ¹⁰Be_{con} record and the ¹⁴C production rate could be further due to uncorrected 312 carbon cycle influences on the ¹⁴C production record (McHargue and Damon, 1991; Siegenthaler 313

et al., 1980). After the production, 14 C oxidizes to 14 CO₂ and enters the global carbon cycle while ¹⁰Be attaches to aerosols (McHargue and Damon, 1991; Siegenthaler et al., 1980). Temporal offsets between the MFM and ice core 10 Be records might be explained by time-scale differences within the dating uncertainties (Fig. 5).

In the frequency range of the solar Gleissberg cycle, the MFM ¹⁰Be_{atmosphere} composite reveals a 318 good agreement with ¹⁰Be fluxes in the GRIP ice core and ¹⁴C production rates (Fig. 6). The 319 different phase relationship around 12800 a BP might be caused by inhomogeneous tropospheric 320 mixing and precipitation, uncorrected carbon cycle influences, time-scale differences within the 321 dating uncertainties (see the paragraph above for details) and/or a single data point with high/low 322 values that can lead to the inclusion or exclusion of a cycle in the narrowly filtered time-series 323 (Fig. 6). The about 50-year resolution of the GISP2 ¹⁰Be flux record inhibits investigating 324 variations in the Gleissberg cycle frequency range. 325

All four cosmogenic radionuclide records reveal notable variability within the frequency range of 326 the solar De Vries cycle (Fig. 6). However, while these variations in the ¹⁰Be_{atmosphere} composite 327 are in-phase with those in the GRIP ¹⁰Be flux and ¹⁴C production rate records from 11310 to 328 about 12500 a BP, they reveal different relationships and amplitudes from about 12520 to 13310 329 a BP (Fig. 6). Again, the most likely explanation for these differences might be inhomogeneous 330 tropospheric mixing and precipitation, uncorrected carbon cycle influences, time-scale 331 differences within dating uncertainties (see the paragraph above for details) and single outlying 332 data points. The same reasons could explain the phase shift between the MFM ¹⁰Be_{atmosphere} 333 composite and the GISP2 ¹⁰Be flux record (Fig. 6). 334

To summarize, similarities with the reconstructed ¹⁴C production rate and ¹⁰Be fluxes in the GRIP and GISP2 ice cores suggest the preservation of the solar production signal in the MFM ¹⁰Be_{atmosphere} composite. Remaining differences between the MFM ¹⁰Be_{atmosphere} composite and the other cosmogenic radionuclide time-series point to inhomogeneous tropospheric mixing and precipitation, uncorrected carbon cycle influences and/or time-scale differences within the dating uncertainties.

341 5.4. Mechanisms of 10 Be deposition

The preservation of the solar modulated production signal in MFM ¹⁰Be_{atmosphere} allows us to 342 draw conclusions about to the depositional mechanisms: (i) Increased sediment flux through the 343 water column tends to increase ¹⁰Be scavenging and, thereby, does not distinctly influence ¹⁰Be 344 concentrations in the sediments (major excursions in SAR are not mirrored by ¹⁰Be_{con} changes of 345 opposite sign (Fig. 2) and ¹⁰Be availability does not seem to be a limiting factor in our study) and 346 (ii) higher ¹⁰Be concentrations in the lake water increase the amount of ¹⁰Be atoms deposited by 347 each sediment particle. In combination, these two effects are comparable to the proposed ¹⁰Be 348 wet deposition in ice cores (Alley et al., 1995) and supported by sediment trap studies on ⁷Be and 349 ¹⁰Be deposition in Lakes Constance and Zurich (Schuler et al., 1991; Vogler et al., 1996). Both 350 sediment trap studies suggest that Be deposition in the lakes is controlled by the particle flux 351 through the water column and atmospheric ¹⁰Be input (Schuler et al., 1991; Vogler et al., 1996). 352 Results on ⁷Be can be transferred to those from ¹⁰Be since both isotopes behave chemically 353 identical (Aldahan et al., 1999). 354

On multi-decadal to centennial scales, ¹⁰Be fluxes in the GRIP and GISP2 ice cores during the Holocene vary by about 50 % (Muscheler and Heikkilä, 2011). These variations are in agreement with estimates of solar induced ¹⁰Be production rate changes on such time-scales (Masarik and Beer, 1999; Muscheler and Heikkilä, 2011). However, ¹⁰Be_{con} in the investigated MFM sediments shows up to 90 % variability (Fig. 2). Therefore, ¹⁰Be flux from the catchment into the lake by surface runoff is likely to contribute to the larger variability in the MFM ¹⁰Be_{con} record.

361

362 **6.** Conclusions

We present the first ¹⁰Be record from varved lake sediments for the Lateglacial-Holocene 363 transition from Meerfelder Maar. We attempt to quantify regional environmental influences on 364 catchment conditions and ¹⁰Be deposition based on regression analyses between our ¹⁰Be record 365 and proxy time-series from the same archive. Regional environmental influences contribute to up 366 to 37 % of the variability in our ¹⁰Be record, but cannot explain major ¹⁰Be excursions. Corrected 367 for environmental influences, our ¹⁰Be record is interpreted to dominantly reflect changes in solar 368 modulated cosmogenic radionuclide production. The preservation of the solar production signal 369 indicates the large potential of ¹⁰Be in varved lake sediments for solar activity reconstruction and 370 as global synchronization tool. However, our results also indicate the importance of a mechanistic 371

understanding of, partly site-specific, environmental effects on 10 Be deposition in lake sediment

archives. Therefore, more studies of ¹⁰Be in varved sediments from lakes with different

374 lake/catchment characteristics can help to further improve the application of this proxy as

indicator of the atmospheric cosmogenic radionuclide production rate.

376

377 Acknowledgements

MC was funded by a German Science Foundation postdoc grant (DFG grant CZ 227/1-1) and the Swedish Research Council (VR grant to RM: Dnr: 2013-8421). Further financial support was provided through a travel grant from the EU COST action ES0907 INTIMATE, an endowment from the Royal Physiographic Society in Lund and a Linnaeus grant to Lund University (LUCCI). We would like to thank Inger Påhlsson for the extraction of ¹⁰Be from sediment samples and Oliver Rach for measuring TOC contents. ¹⁰Be data are available at the PANGAEA data library. We thank two anonymous reviewers for their constructive comments.

385

386

387 **References**

- Adolphi, F., Muscheler, R., 2016. Synchronizing the Greenland ice core and radiocarbon
 timescales over the Holocene Bayesian wiggle-matching of cosmogenic radionuclide
 records. Clim. Past 12, 15–30. doi:10.5194/cp-12-15-2016
- Adolphi, F., Muscheler, R., Svensson, A., Aldahan, A., Possnert, G., Beer, J., Sjolte, J., Björck,
 S., Matthes, K., Thiéblemont, R., 2014. Persistent link between solar activity and Greenland
 climate during the Last Glacial Maximum. Nat. Geosci. 7, 662–666. doi:10.1038/ngeo2225
- Aldahan, A., Ye, H.P., Possnert, G., 1999. Distribution of beryllium between solution and
 minerals (biotite and albite) under atmospheric conditions and variable pH. Chem. Geol.
 156, 209–229. doi:10.1016/s0009-2541(98)00186-7
- Alley, R.B., Finkel, R.C., Nishiizumi, K., Anandakrishnan, S., Shuman, C.A., Mershon, G.,
 Zielinski, G.A., Mayewski, P.A., 1995. Changes in continental and sea-salt atmospheric
 loadings in central Greenland during the most recent deglaciation: model-based estimates. J.
 Glaciol. 41, 503–514.
- Beer, J., Blinov, B., Bonani, G., Finkel, R.C., Hofmann, H.J., Lehmann, B., Oeschger, H., Sigg,
 A., Schwander, J., Staffelbach, T., Stauffer, B., Suter, M., Wölfli, W., 1990. Use of ¹⁰Be in
 polar ice to trace the 11-year cycle of solar activity. Nature 347, 164–166.
- Berggren, A.M., Aldahan, A., Possnert, G., Haltia-Hovi, E., Saarinen, T., 2010. ¹⁰Be and solar activity cycles in varved lake sediments, AD 1900-2006. J. Paleolimnol. 44, 559–569. doi:10.1007/s10933-010-9437-1
- 407 Brauer, A., Endres, C., Günter, C., Litt, T., Stebich, M., Negendank, J.F.W., 1999. High

- resolution sediment and vegetation responses to Younger Dryas climate change in varved
- 409 lake sediments from Meerfelder Maar, Germany. Quat. Sci. Rev. 18, 321–329.
- 410 doi:10.1016/S0277-3791(98)00084-5
- Brauer, A., Endres, C., Zolitschka, B., Negendank, J.F.W., 2000. AMS radiocarbon and varve
 chronology from the annually laminated sediment record of Lake Meerfelder Maar,
 Germany, Radiocarbon 42, 355–368. doi:10.2458/azu is rc.42.3828
- Brauer, A., Haug, G.H., Dulski, P., Sigman, D.M., Negendank, J.F.W., 2008. An abrupt wind
 shift in western Europe at the onset of the Younger Dryas cold period. Nat. Geosci. 1, 520–
 523. doi:10.1038/ngeo263
- Czymzik, M., Muscheler, R., Brauer, A., Adolphi, F., Ott, F., Kienel, U., Dräger, N., Słowiński,
 M., Aldahan, A., Possnert, G., 2015. Solar cycles and depositional processes in annual ¹⁰Be
 from two varved lake sediment records. Earth Planet. Sci. Lett. 428, 44–51.
 doi:10.1016/j.epsl.2015.07.037
- 421 Davison, W., 1993. Iron and manganese in lakes. Earth-Science Rev. 34, 119–163.
 422 doi:10.2307/41226456
- Delaygue, G., Bard, E., 2011. An Antarctic view of Beryllium-10 and solar activity for the past
 millennium. Clim. Dyn. 36, 2201–2218. doi:10.1007/s00382-010-0795-1
- Ebisuzaki, W., 1997. A method to estimate the statistical significance of a correlation when the
 data are serially correlated. J. Clim. 10, 2147–2153. doi:10.1175/15200442(1997)010<2147:AMTETS>2.0.CO;2
- Engels, S., van Geel, B., Buddelmeijer, N., Brauer, A., 2015. High-resolution palynological
 evidence for vegetation response to the Laacher See eruption from the varved record of
 Meerfelder Maar (Germany) and other central European records. Rev. Palaeobot. Palynol.
 221, 160–170. doi:10.1016/j.revpalbo.2015.06.010
- Finkel, R.C., Nishiizumi, K., 1997. Beryllium 10 concentrations in the Greenland Ice Sheet
 Project 2 ice core from 3-40 ka. J. Geophys. Res. 102, 26699–26706.
- Graly, J.A., Bierman, P.R., Reusser, L.J., Pavich, M.J., 2010. Meteoric ¹⁰Be in soil profiles A
 global meta-analysis. Geochim. Cosmochim. Acta 74, 6814–6829.
 doi:10.1016/j.gca.2010.08.036
- Gray, L.J., Beer, J., Geller, M., Haigh, J.D., Lockwood, M., Matthes, K., Cubasch, U.,
 Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G.A., Shindell, D., van Geel,
 B., White, W., 2010. Solar influences on climate. Rev. Geophys. 48, RG4001.
 doi:10.1029/2009RG000282
- Heikkilä, U., Beer, J., Abreu, J.A., Steinhilber, F., 2013. On the atmospheric transport and
 deposition of the cosmogenic radionuclides (¹⁰Be): A review. Space Sci. Rev. 176, 321–
 332. doi:10.1007/s11214-011-9838-0
- 444 Köhler, P., Muscheler, R., Fischer, H., 2006. A model-based interpretation of low-frequency 445 changes in the carbon cycle during the last 120,000 years and its implications for the 446 reconstruction of atmospheric Δ^{14} C. Geochemistry, Geophys. Geosystems 7, Q11N06. 447 doi:10.1029/2005GC001228

- 448 Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U.C., Knie, K., Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., von Gostomski, C.L., Kossert, K., Maiti, M., Poutivtsev, M., 449 Remmert, A., 2010. A new value for the half-life of ¹⁰Be by Heavy-Ion Elastic Recoil 450 Detection and liquid scintillation counting. Nucl. Instruments Methods Phys. Res. Sect. B 451 Beam Interact. with Mater. Atoms 268, 187–191. doi:10.1016/j.nimb.2009.09.020 452 Lal, D., Peters, B., 1967. Cosmic ray produced radioactivity on the Earth, in: Flügge, S. (Ed.), 453 454 Handbuch Der Physik. Springer, Berlin, pp. 551-612. doi:10.1007/978-3-642-46079-1 Lane, C.S., Brauer, A., Blockley, S.P.E., Dulski, P., 2013. Volcanic ash reveals time-455 transgressive abrupt climate change during the Younger Dryas. Geology 41, 1251–1254. 456 457 doi:10.1130/G34867.1 Lane, C.S., Brauer, A., Martin-Puertas, C., Blockley, S.P.E., Smith, V.C., Tomlinson, E.L., 2015. 458 The Late Quaternary tephrostratigraphy of annually laminated sediments from Meerfelder 459 Maar, Germany. Quat. Sci. Rev. 122, 192–206. doi:10.1016/j.guascirev.2015.05.025 460
- 461 Lücke, A., Brauer, A., 2004. Biogeochemical and micro-facial fingerprints of ecosystem
 462 response to rapid Late Glacial climatic changes in varved sediments of Meerfelder Maar
 463 (Germany). Palaeogeogr. Palaeoclimatol. Palaeoecol. 211, 139–155.
 464 doi:10.1016/j.palaeo.2004.05.006
- Mann, M., Beer, J., Steinhilber, F., Christl, M., 2012. ¹⁰Be in lacustrine sediments A record of solar activity? J. Atmos. Solar-Terrestrial Phys. 80, 92–99. doi:10.1016/j.jastp.2012.03.011
- Martin-Puertas, C., Brauer, A., Dulski, P., Brademann, B., 2012a. Testing climate-proxy
 stationarity throughout the Holocene: An example from the varved sediments of Lake
 Meerfelder Maar (Germany). Quat. Sci. Rev. 58, 56–65.
- doi:10.1016/j.quascirev.2012.10.023
- Martin-Puertas, C., Matthes, K., Brauer, A., Muscheler, R., Hansen, F., Petrick, C., Aldahan, A.,
 Possnert, G., van Geel, B., 2012b. Regional atmospheric circulation shifts induced by a
 grand solar minimum. Nat. Geosci. 5, 397–401. doi:10.1038/ngeo1460
- 474 Masarik, J., Beer, J., 1999. Simulation of particle fluxes and cosmogenic nuclide production in
 475 the Earth's atmosphere. J. Geophys. Res. 104, 12099–12111.
- McHargue, L.R., Damon, P.E., 1991. The global Beryllium 10 cycle. Rev. Geophys. 29, 141–
 158.
- Muscheler, R., Adolphi, F., Knudsen, M.F., 2014. Assessing the differences between the IntCal
 and Greenland ice-core time scales for the last 14,000 years via the common cosmogenic
 radionuclide variations. Quat. Sci. Rev. 106, 81–87. doi:10.1016/j.quascirev.2014.08.017
- Muscheler, R., Beer, J., Wagner, G., Laj, C., Kissel, C., Raisbeck, G.M., Yiou, F., Kubik, P.W.,
 2004. Changes in the carbon cycle during the last deglaciation as indicated by the
 comparison of ¹⁰Be and ¹⁴C records. Earth Planet. Sci. Lett. 219, 325–340.
 doi:10.1016/S0012-821X(03)00722-2
- Muscheler, R., Heikkilä, U., 2011. Constraints on long-term changes in solar activity from the
 range of variability of cosmogenic radionuclide records. Astrophys. Sp. Sci. Trans. 7, 355–
 364. doi:10.5194/astra-7-355-2011

- Muscheler, R., Joos, F., Beer, J., Müller, S.A., Vonmoos, M., Snowball, I., 2007. Solar activity
 during the last 1000 yr inferred from radionuclide records. Quat. Sci. Rev. 26, 82–97.
 doi:10.1016/j.quascirev.2006.07.012
- Pedro, J.B., McConnell, J.R., van Ommen, T.D., Fink, D., Curran, M.A.J., Smith, A.M., Simon,
 K.J., Moy, A.D., Das, S.B., 2012. Solar and climate influences on ice core ¹⁰Be records
 from Antarctica and Greenland during the neutron monitor era. Earth Planet. Sci. Lett. 355–
- 494 356, 174–186. doi:10.1016/j.epsl.2012.08.038
- Rach, O., Brauer, A., Wilkes, H., Sachse, D., 2014. Delayed hydrological response to Greenland
 cooling at the onset of the Younger Dryas in western Europe. Nat. Geosci. 7, 109–112.
 doi:10.1038/ngeo2053
- Raisbeck, G.M., Yiou, F., Fruneau, M., Loiseaux, J.M., Lieuvin, M., Ravel, J.C., 1981.
 Cosmogenic ¹⁰Be/⁷Be as a probe for atmospheric transport processes. Geophys. Res. Lett. 8, 1015–1018. doi:10.1029/GL008i009p01015
- Rasmussen, S.O., Andersen, K.K., Svensson, A.M., Steffensen, J.P., Vinther, B.M., Clausen,
 H.B., Siggaard-Andersen, M.L., Johnsen, S.J., Larsen, L.B., Dahl-Jensen, D., Bigler, M.,
 Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M.E., Ruth, U., 2006. A new
 Greenland ice core chronology for the last glacial termination. J. Geophys. Res. Atmos.
 111, D06102. doi:10.1029/2005JD006079
- Schuler, C., Wieland, E., Santschi, P.H., Sturm, M., Lueck, A., Bollhalder, S., Beer, J., Bonani,
 G., Hofmann, H.J., Suter, M., Wolfli, W., 1991. A multitracer study of radionuclides in
 Lake Zurich, Switzerland: 1. Comparison of atmospheric and sedimentary fluxes of ⁷Be,
 ¹⁰Be, ²¹⁰Pb, ²¹⁰Po and ¹³⁷Cs. J. Geophys. Res. 96, 17051–17065.
- Siegenthaler, U., Heimann, M., Oeschger, H., 1980. ¹⁴C variations caused by changes in the
 global carbon cycle. Radiocarbon 22, 177–191.
- Snowball, I., Muscheler, R., 2007. Palaeomagnetic intensity data: an Achilles heel of solar
 activity reconstructions. The Holocene 17, 851–859. doi:10.1177/0959683607080531
- Vogler, S., Jung, M., Mangini, A., 1996. Scavenging of ²³⁴Th and ⁷Be in Lake Constance.
 Limnol. Oceanogr. 41, 1384–1393.
- Vonmoos, M., Beer, J., Muscheler, R., 2006. Large variations in Holocene solar activity:
 Constraints from ¹⁰Be in the Greenland Ice Core Project ice core. J. Geophys. Res. 111,
 A10105. doi:10.1029/2005ja011500
- Weltje, G.J., Tjallingii, R., 2008. Calibration of XRF core scanners for quantitative geochemical
 logging of sediment cores: Theory and application. Earth Planet. Sci. Lett. 274, 423–438.
 doi:10.1016/j.epsl.2008.07.054
- Willenbring, J.K., von Blanckenburg, F., 2010. Meteoric cosmogenic Beryllium-10 adsorbed to
 river sediment and soil: Applications for Earth-surface dynamics. Earth-Science Rev. 98,
 105–122. doi:10.1016/j.earscirev.2009.10.008
- Zolitschka, B., 1998. A 14,000 year sediment yield record from western Germany based on
 annually laminated lake sediments. Geomorphology 22, 1–17. doi:10.1016/S0169 555X(97)00051-2

Table 1. Statistics for the linear regressions between the Meerfelder Maar ${}^{10}\text{Be}_{con}$ record and significantly correlated proxy time-series. (a) For simple linear regressions between ${}^{10}\text{Be}_{con}$ and SAR, Ti, Si/Ti ratio, TOC and Fe seperately. (b) For the multiple linear regression between ${}^{10}\text{Be}_{con}$ and all five significantly correlated proxy time-series. Only proxy time-series with a significant contribution (90 % level) were included in the final regression.

533

Fig. 1. Lake-catchment setting of Meerfelder Maar. Geographical position of Meerfelder Maar in western Europe. Topography of the Meerfelder Maar crater and bathymetry of the lake with location of composite sediment profile MFM09.

537

Fig. 2. Meerfelder Maar ¹⁰Be concentrations (${}^{10}Be_{con}$) and environmental proxy time-series from the same archive. ${}^{10}Be_{con}$ compared with sediment accumulation rate (SAR), Ti, Si/Ti ratio, total organic carbon (TOC) and Fe. The Laacher See Tephra was excluded from the analyses. Gray bars indicate ${}^{10}Be_{con}$ measurement uncertainties. Colored numbers indicate mean ${}^{10}Be_{con}$ for the early Holocene, Younger Dryas and late Allerød. Significance levels of correlations between ${}^{10}Be_{con}$ and proxy time-series were calculated using a random phase test (Ebisuzaki, 1997). Onset (12679 varve a BP) and termination (11590 varve a BP) of the Younger Dryas were defined from

545 Meerfelder Maar sediments (Brauer et al., 2008; Martin-Puertas et al., 2012a).

546

Fig. 3. Correlation analyses of ¹⁰Be concentrations ($^{10}Be_{con}$) and environmental proxy time-series from the investigated Meerfelder Maar sediments. $^{10}Be_{con}$ plotted against sediment accumulation rate (SAR), Ti, Si/Ti ratio, total organic carbon (TOC) and Fe. All datasets were normalized by dividing by the mean.

551

Fig. 4. Meerfelder Maar ¹⁰Be concentrations (¹⁰Be_{con}) corrected for the effects of varying environmental conditions. ¹⁰Be_{con} corrected for changes in the environment (¹⁰Be_{atmosphere}) as 552 553 reflected by variations in sediment accumulation rates (SAR), Ti, Si/Ti ratio, total organic carbon 554 (TOC) and Fe. The corrections were calculated using the individual environmental proxy time-555 556 series and all significantly correlated proxy time-series, to evaluate the largest possible environmental effects on ${}^{10}\text{Be}_{con}$ deposition (the final regression only includes the Si/Ti ratio and TOC proxies with a significant (90 % level) contribution). (a) ${}^{10}\text{Be}_{con}$ and calculated ${}^{10}\text{Be}_{atmosphere}$ 557 558 time-series for the complete record from 11310 to 13130 varve a BP. (b) Same as (a), but 559 560 calculated separately for the early Holocene (11310-11570 varve a BP), Younger Dryas (11610-12670 varve a BP) and late Allerød (12690-13130 varve a BP). Before the analysis, all datasets 561 were resampled to a 20-year resolution and normalized by dividing by the mean. 562

563

Fig. 5. 500-year high-pass filtered cosmogenic radionuclide records. The black line represents 564 the Meerfelder Maar ¹⁰Be_{atmosphere} composite (mean of the six ¹⁰Be_{atmosphere} time-series for the 565 period 11310 to 13130 varve a BP). Gray bands indicate the uncertainty ranges of the 566 ¹⁰Be_{atmosphere} composite expressed as the maximum differences between the individual 567 ¹⁰Be_{atmosphere} time-series. The red line depicts the reconstructed ¹⁴C production rate (Muscheler et 568 al., 2014). The blue line shows ¹⁰Be flux in the GRIP ice core (Adolphi et al., 2014). The green 569 line shows ¹⁰Be flux in the GISP2 ice core (Finkel and Nishiizumi, 1997). Both ice core ¹⁰Be 570 571 records are on the GICC05 time-scale. The age of the Vedde Ash was determined to 12140 ± 40 varve a BP in the MFM2015 time-scale (Lane et al., 2013) and 12121 ± 114 a BP in the GICC05 572 573 time-scale of the GRIP/GISP2 ice cores (Rasmussen et al., 2006).

574

Fig. 6. Comparison of the Meerfelder Maar ¹⁰Be_{atmosphere} composite with other cosmogenic 575 radionuclide records. ¹⁰Be_{atmosphere} composite and reconstructed ¹⁴C production rate (Muscheler et 576 al., 2014), ¹⁰Be flux from the GRIP ice core (Adolphi et al., 2014) and ¹⁰Be flux from the GISP2 577 ice core (Finkel and Nishiizumi, 1997) after high and bandpass filtering. Both ice core records 578 are on the GICC05 time-scale. (left) 500-year high pass filtered time-series. (middle) Solar 579 Gleissberg cycle (frequencies between 1/75 and 1/100 years⁻¹). (right) Solar De Vries cycle 580 (frequencies between 1/180 and 1/230 years⁻¹). Gleissberg cycle variations cannot be 581 investigated for the GISP2 ¹⁰Be flux time-series due to the on average 50-year resolution of the 582 583 record.

(a) ¹⁰ Be corrected using single sig. proxy records
¹⁰ Be _{atmosphere} (SAR)
¹⁰ Be _{atmosphere} (Ti)
¹⁰ Be _{atmosphere} (Si/Ti ratio)
¹⁰ Be _{atmosphere} (TOC)
¹⁰ Be _{atmosphere} (Fe)
(b) ¹⁰ Be corrected using all sig. proxy records
¹⁰ Be _{atmosphere} (Si/Ti ratio + TOC; not significant at 90% level: SAR, Ti, Fe)

Figure 1 Click here to download high resolution image

2

Highlights:

¹⁰Be record from varved lake sediments covering the Lateglacial-Holocene transition New approach quantifies environmental influences on ¹⁰Be deposition Indicates potential of ¹⁰Be in varved lake sediments for solar activity reconstruction Indicates potential of ¹⁰Be in varved lake sediments as synchronization tool

1 Response to the reviewer's comments

2 We thank the reviewer for the constructive comments, which helped to further improve our 3 manuscript.

Reviewer #2: The manuscript has been improved in response to my initial comments. I list several points below
 that still require some revisions. With these revisions addressed I think the manuscript is suitable for publication. I

6 do not need to see the manuscript again.

7

1). The authors modified the title in response to my initial comments but maintain the claim in the abstract and
conclusion that they are presenting a "record of solar activity variations". Records of solar activity are directly used
(and sometimes misused) in forcing paleoclimate model runs. If they think their record is something that is suitable
to be used as such a forcing then they might persist with this claim. Otherwise I would suggest to back it off as in

- 12 the title or, at the very least, add some gualification on this point.
- 13

14 2). From the abstract line 35: "Our data suggest that environmental influences on the catchment do not

15 substantially bias major 10Be excursions on multi-decadal scales, but contribute to up to 37 % of variability".

16 This sentence does not make sense. The review response distinguished between correlation and 'multi-decadal

17 10Be excursions'. A couple of sentences are needed here to state the results of your regression analysis

18 (environmental influences contribute up to 37% of the variance: r = 0.63 is not minor!) and separately state your

19 point about also seeing major shifts in 10Be that are not mirrored by changes in these environmental variables.

- 20 This two points are different and this must be explained clearly.
- 21

22 3) Abstract line 36: "The 10Be record dominantly reflects changes in solar activity".

23 Given that the environment-corrected 10Be record is not quantitatively tested against other more established

records of solar activity this statement should be qualified. e.g. "We interpret that the 10Be record dominantly

25 reflects...". The same point applies in the Discussion and Conclusion.

26

4) Line 343: "(i) Increased sediment flux through the water column tends to increase 10Be scavenging and,

28 thereby, does not distinctly influence 10Be concentrations in the sediments".

29 This statement assumes that the available 10Be store in the water column is never a limiting factor. This may be

30 the case, but please add a couple of sentences to acknowledge the assumption and explain why it is reasonable.

31

32 Minor point:

- 33 Line 65: Its not a case of 'might'; 10Be deposition *is* spatially variable.
- 34 We modified our manuscript according to the reviewer's suggestions.

Appendix 1 Click here to download Supplementary Data: Czymzik et al. Appendix 1.xls