3 research outputs found

    Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome.

    Get PDF
    The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP

    Evolutionary history of HOMEODOMAIN LEUCINE ZIPPER transcription factors during plant transition to land

    No full text
    Plant transition to land required several regulatory adaptations. The mechanisms behind these changes remain unknown. Since the evolution of transcription factors (TFs) families accompanied this transition, we studied the HOMEODOMAIN LEUCINE ZIPPER (HDZ) TF family known to control key developmental and environmental responses. We performed a phylogenetic and bioinformatics analysis of HDZ genes using transcriptomic and genomic datasets from a wide range of Viridiplantae species. We found evidence for the existence of HDZ genes in chlorophytes and early-divergent charophytes identifying several HDZ members belonging to the four known classes (I–IV). Furthermore, we inferred a progressive incorporation of auxiliary motifs. Interestingly, most of the structural features were already present in ancient lineages. Our phylogenetic analysis inferred that the origin of classes I, III, and IV is monophyletic in land plants in respect to charophytes. However, class IIHDZ genes have two conserved lineages in charophytes and mosses that differ in the CPSCE motif. Our results indicate that the HDZ family was already present in green algae. Later, the HDZ family expanded accompanying critical plant traits. Once on land, the HDZ family experienced multiple duplication events that promoted fundamental neo- and subfunctionalizations for terrestrial life.Fil: Romani, Facundo Alihuen. Instituto de Agrobiotecnología del Litoral (conicet-unl); ArgentinaFil: Reinheimer, Renata. Instituto de Agrobiotecnología del Litoral (conicet-unl); ArgentinaFil: Florent, Stevie N.. Monash University; AustraliaFil: Bowman, John L.. Monash University; AustraliaFil: Moreno, Javier Edgardo. Instituto de Agrobiotecnología del Litoral (conicet-unl); Argentin

    Oil Body Formation in Marchantia polymorpha Is Controlled by MpC1HDZ and Serves as a Defense against Arthropod Herbivores

    No full text
    The origin of a terrestrial flora in the Ordovician required adaptation to novel biotic and abiotic stressors. Oil bodies, a synapomorphy of liverworts, accumulate secondary metabolites, but their function and development are poorly understood. Oil bodies of Marchantia polymorpha develop within specialized cells as one single large organelle. Here, we show that a class I homeodomain leucine-zipper (C1HDZ) transcription factor controls the differentiation of oil body cells in two different ecotypes of the liverwort M. polymorpha, a model genetic system for early divergent land plants. In flowering plants, these transcription factors primarily modulate responses to abiotic stress, including drought. However, loss-of-function alleles of the single ortholog gene, MpC1HDZ, in M. polymorpha did not exhibit phenotypes associated with abiotic stress. Rather, Mpc1hdz mutant plants were more susceptible to herbivory, and total plant extracts of the mutant exhibited reduced antibacterial activity. Transcriptomic analysis of the mutant revealed a reduction in expression of genes related to secondary metabolism that was accompanied by a specific depletion of oil body terpenoid compounds. Through time-lapse imaging, we observed that MpC1HDZ expression maxima precede oil body formation, indicating that MpC1HDZ mediates differentiation of oil body cells. Our results indicate that M. polymorpha oil bodies, and MpC1HDZ, are critical for defense against herbivory, but not for abiotic stress tolerance. Thus, C1HDZ genes were co-opted to regulate separate responses to biotic and abiotic stressors in two distinct land plant lineages.Fil: Romani, Facundo Alihuen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Banic, Elizabeta. Max Planck Institute For Plant Breeding Research; AlemaniaFil: Florent, Stevie N.. Monash University. Faculty Of Science. School Of Biological Sciences; AustraliaFil: Kanazawa, Takehiko. National Institute For Basic Biology; JapónFil: Goodger, Jason Q. D.. School Of Sciences; AustraliaFil: Mentink, Remco A.. Max Planck Institute For Plant Breeding Research; AlemaniaFil: Dierschke, Tom. Monash University. Faculty Of Science. School Of Biological Sciences; AustraliaFil: Zachgo, Sabine. Onasbruck University; AlemaniaFil: Ueda, Takashi. National Institute For Basic Biology; JapónFil: Bowman, John L.. Monash University. Faculty Of Science. School Of Biological Sciences; AustraliaFil: Tsiantis, Miltos. Max Planck Institute For Plant Breeding Research; AlemaniaFil: Moreno, Javier Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentin
    corecore