394 research outputs found

    Privacy in times of COVID-19: a pilot study in the Republic of Ireland

    Get PDF
    Contact tracing apps used in tracing and mitigating the spread of COVID-19 have sparked discussions and controversies worldwide with major concerns around privacy. COVID Tracker app used in the Republic of Ireland was praised in general for the way it addressed privacy and was used as baseline for other contact tracing apps worldwide. The success of the app is dependent on the general public uptake, hence their voice and attitude is the one that really matters. This paper focuses on developing a survey and the methods aiming to examine the attitudes toward privacy during COVID-19 of the general public in the Republic of Ireland and their impact on the uptake of the COVID tracker app. Various privacy models are used and health belief model as well in this purpose. A pilot study with 286 participants show a change in attitude towards privacy during COVID-19 pandemic, with more people willing to share their data in the interest of saving lives. However, privacy attitudes are shown to have impacted the adoption of the app in Ireland

    Pumping Metallic Nanoparticles with Spatial Precision within Magnetic Mesoporous Platforms: 3D Characterization and Catalytic Application

    Get PDF
    The present work shows an efficient strategy to assemble two types of functional nanoparticles onto mesoporous MCM-41 silica nanospheres with a high degree of spatial precision. In a first stage, magnetite nanoparticles are synthesized with a size larger than the support pores and grafted covalently through a peptide-like bonding onto their external surface. This endowed the silica nanoparticles with a strong superparamagnetic response, while preserving the highly ordered interior space for the encapsulation of other functional guest species. Second, we report the finely controlled pumping of preformed Pt nanoparticles (1.5 nm) within the channels of the magnetic MCM-41 nanospheres to confer an additional catalytic functionality to the multiassembled nanoplatform. The penetration depth of the metallic nanoparticles can be explained as a result of the interplay between the particle-wall electrostatic attraction and the repulsive forces between neighboring Pt nanoparticles. A detailed transmission electron microscopy and a 3D high-resolution high-angle annular dark-field detector electron tomography study were carried out to characterize the material and to explain the assembly mechanism. Finally, the performance of these multifunctional nanohybrids as magnetically recoverable catalysts has been evaluated in the selective hydrogenation of p-nitrophenol, a well-known pollutant and intermediate in multiple industrial processes

    SU(5) D-brane realizations, Yukawa couplings and proton stability

    Get PDF
    We discuss SU(5) Grand Unified Theories in the context of orientifold compactifications. Specifically, we investigate two and three D-brane stack realizations of the Georgi-Glashow and the flipped SU(5) model and analyze them with respect to their Yukawa couplings. As pointed out in arXiv:0909.0271 the most economical Georgi-Glashow realization based on two stacks generically suffers from a disastrous large proton decay rate. We show that allowing for an additional U(1) D-brane stack this as well as other phenomenological problems can be resolved. We exemplify with globally consistent Georgi-Glashow models based on RCFT that these D-brane quivers can be indeed embedded in a global setting. These globally consistent realizations admit rigid O(1) instantons inducing the perturbatively missing coupling 10105^H. Finally we show that flipped SU(5) D-brane realizations even with multiple U(1) D-brane stacks are plagued by severe phenomenological drawbacks which generically cannot be overcome.Comment: 34 pages v2 minor correction

    Non-Perturbative Effects on a Fractional D3-Brane

    Full text link
    In this note we study the N=1 abelian gauge theory on the world volume of a single fractional D3-brane. In the limit where gravitational interactions are not completely decoupled we find that a superpotential and a fermionic bilinear condensate are generated by a D-brane instanton effect. A related situation arises for an isolated cycle invariant under an orientifold projection, even in the absence of any gauge theory brane. Moreover, in presence of supersymmetry breaking background fluxes, such instanton configurations induce new couplings in the 4-dimensional effective action, including non-perturbative contributions to the cosmological constant and non-supersymmetric mass terms.Comment: 18 pages, v3: refs adde

    Instanton Induced Neutrino Majorana Masses in CFT Orientifolds with MSSM-like spectra

    Get PDF
    Recently it has been shown that string instanton effects may give rise to neutrino Majorana masses in certain classes of semi-realistic string compactifications. In this paper we make a systematic search for supersymmetric MSSM-like Type II Gepner orientifold constructions admitting boundary states associated with instantons giving rise to neutrino Majorana masses and other L- and/or B-violating operators. We analyze the zero mode structure of D-brane instantons on general type II orientifold compactifications, and show that only instantons with O(1) symmetry can have just the two zero modes required to contribute to the 4d superpotential. We however discuss how the addition of fluxes and/or possible non-perturbative extensions of the orientifold compactifications would allow also instantons with Sp(2)Sp(2) and U(1) symmetries to generate such superpotentials. In the context of Gepner orientifolds with MSSM-like spectra, we find no models with O(1) instantons with just the required zero modes to generate a neutrino mass superpotential. On the other hand we find a number of models in one particular orientifold of the Gepner model (2,4,22,22)(2,4,22,22) with Sp(2)Sp(2) instantons with a few extra uncharged non-chiral zero modes which could be easily lifted by the mentioned effects. A few more orientifold examples are also found under less stringent constraints on the zero modes. This class of Sp(2)Sp(2) instantons have the interesting property that R-parity conservation is automatic and the flavour structure of the neutrino Majorana mass matrices has a simple factorized form.Comment: 68 pages, 2 figures; v2. typos corrected, refs adde

    A 3D insight on the catalytic nanostructuration of few-layer graphene

    Get PDF
    The catalytic cutting of few-layer graphene is nowadays a hot topic in materials research due to its potential applications in the catalysis field and the graphene nanoribbons fabrication. We show here a 3D analysis of the nanostructuration of few-layer graphene by iron-based nanoparticles under hydrogen flow. The nanoparticles located at the edges or attached to the steps on the FLG sheets create trenches and tunnels with orientations, lengths and morphologies defined by the crystallography and the topography of the carbon substrate. The cross-sectional analysis of the 3D volumes highlights the role of the active nanoparticle identity on the trench size and shape, with emphasis on the topographical stability of the basal planes within the resulting trenches and channels, no matter the obstacle encountered. The actual study gives a deep insight on the impact of nanoparticles morphology and support topography on the 3D character of nanostructures built up by catalytic cutting

    FCNC Processes from D-brane Instantons

    Get PDF
    Low string scale models might be tested at the LHC directly by their Regge resonances. For such models it is important to investigate the constraints of Standard Model precision measurements on the string scale. It is shown that highly suppressed FCNC processes like K0- bar K^0 oscillations or leptonic decays of the D0-meson provide non-negligible lower bounds on both the perturbatively and surprisingly also non-perturbatively induced string theory couplings. We present both the D-brane instanton formalism to compute such amplitudes and discuss various possible scenarios and their constraints on the string scale for (softly broken) supersymmetric intersecting D-brane models.Comment: 28 pages, 13 figures, reference added, 1 typo corrected, style file adde

    Non-perturbative effective interactions from fluxes

    Get PDF
    Motivated by possible implications on the problem of moduli stabilization and other phenomenological aspects, we study D-brane instanton effects in flux compactifications. We focus on a local model and compute non-perturbative interactions generated by gauge and stringy instantons in a N = 1 quiver theory with gauge group U(N_0) x U(N_1) and matter in the bifundamentals. This model is engineered with fractional D3-branes at a C^3/(Z_2 x Z_2) singularity, and its non-perturbative sectors are described by introducing fractional D-instantons. We find a rich variety of instanton-generated F- and D-term interactions, ranging from superpotentials and Beasley-Witten like multi-fermion terms to non-supersymmetric flux-induced instanton interactions.Comment: 37 pages, 7 figures. Final version published on JHEP. Section 4 modified in several points regarding string corrections in absence of fluxes; in particular, section 4.3 is removed. Some other minor changes and two references adde

    Phenomenological analysis of D-brane Pati-Salam vacua

    Get PDF
    In the present work we perform a phenomenological analysis of the effective low energy models with Pati-Salam (PS) gauge symmetry derived in the context of D-branes. A main issue in these models arises from the fact that the right-handed fermions and the PS-symmetry breaking Higgs field transform identically under the PS symmetry, causing unnatural matter-Higgs mixing effects. We argue that this problem could be solved in particular D-brane setups where these fields arise in different intersections. We further observe that whenever a large Higgs mass term is generated in a particular class of mass spectra, a splitting mechanism -reminiscent of the doublet triplet splitting- may protect the neutral Higgs components from a heavy mass term. We analyze the implications of each individual representation which in principle is available in these models in order to specify the minimal spectrum required to build up a consistent PS model which reconciles the low energy data. A short discussion is devoted on the effects of stringy instanton corrections, particularly those generating missing Yukawa couplings and contributing to the fermion mass textures. We discuss the correlations of the intersecting D-brane spectra with those obtained from Gepner constructions and analyze the superpotential, the resulting mass textures and the low energy implications of some examples of the latter along the lines proposed above.Comment: 50 pages, 3 figures (v2 - Minor corrections

    Black String Entropy and Fourier-Mukai Transform

    Get PDF
    We propose a microscopic description of black strings in F-theory based on string duality and Fourier-Mukai transform. These strings admit several different microscopic descriptions involving D-brane as well as M2 or M5-brane configurations on elliptically fibered Calabi-Yau threefolds. In particular our results can also be interpreted as an asymptotic microstate count for D6-D2-D0 configurations in the limit of large D2-charge on the elliptic fiber. The leading behavior of the microstate degeneracy in this limit is shown to agree with the macroscopic entropy formula derived from the black string supergravity solution.Comment: 22 pages, latex; v2: substantial revision of the macroscopic description of the system; results essentially unchange
    • …
    corecore