108 research outputs found

    MicroRNA expression profiles in liver and colon of sexually immature gilts after exposure to Fusarium mycotoxins

    Get PDF
    To improve our knowledge of the role of microRNAs (miRs) in responses of the porcine digestive system to two Fusarium mycotoxins, zearalenone (ZEN) and deoxynivalenol (DON), we examined the expression of 7 miRs (miR-9, miR-15a, miR-21, miR-34a, miR-122, miR-125b, and miR-192), previously found to be deregulated in diseased liver and colon cells. In this study, immature gilts were exposed to NOEL doses of ZEN (40 μg/kg/d), DON (12 μg/kg/d), ZEN+DON (40+12 μg/kg/d), and placebo (negative control group) for 7, 14, 21, 28, 35, and 42 days. Before the treatment, expression levels of the selected miRs were measured in the liver, the duodenum, the jejunum, and the ascending and the descending colon of the gilts. Hierarchical clustering of the tissues by their miR expression profiles was consistent with what would be expected based on the anatomical locations and the physiological functions of the organs, suggesting that functions of the miRs are related to the specificities of the tissues in which they are expressed. A subset of 2 pairs of miRs (miR-21+miR-192 and miR-15a+miR-34a), which were assigned to two distinct clusters based on their tissue abundance, was then evaluated in the liver and the ascending and the descending colon during the treatment. The most meaningful results were obtained from the ascending colon, where a significant effect of the treatment was observed, suggesting that during the exposure to mycotoxins, the pathways involved in cell proliferation and survival were disordered. Changes in miR expression in the liver and the descending colon of the treated gilts were smaller, and were associated more with treatment duration than the exposure to ZEN, DON, or ZEN+DON. Further research should focus on identification of genes whose expression is regulated by these aberrantly expressed miRs. This should facilitate understanding of the miRNA-regulated biological effects of mycotoxins

    Towards consistent mapping of urban structure - global human settlement layer and local climate zones

    Get PDF
    Although more than half of the Earth's population live in urban areas, we know remarkably little about most cities and what we do know is incomplete (lack of coverage) and inconsistent (varying definitions and scale). While there have been considerable advances in the derivation of a global urban mask using satellite information, the complexity of urban structures, the heterogeneity of materials, and the multiplicity of spectral properties have impeded the derivation of universal urban structural types (UST). Further, the variety of UST typologies severely limits the comparability of such studies and although a common and generic description of urban structures is an essential requirement for the universal mapping of urban structures, such a standard scheme is still lacking. More recently, there have been two developments in urban mapping that have the potential for providing a standard approach: the Local Climate Zone (LCZ) scheme (used by the World Urban Database and Access Portal Tools project) and the Global Human Settlement Layer (GHSL) methodology by JRC. In this paper the LCZ scheme and the GHSL LABEL product were compared for selected cities. The comparison between both datasets revealed a good agreement at city and coarse scale, while the contingency at pixel scale was limited due to the mismatch in grid resolution and typology. At a 1 km scale, built-up as well as open and compact classes showed very good agreement in terms of correlation coefficient and mean absolute distance, spatial pattern, and radial distribution as a function of distance from town, which indicates that a decomposition relevant for modelling applications could be derived from both. On the other hand, specific problems were found for both datasets, which are discussed along with their general advantages and disadvantages as a standard for UST classification in urban remote sensing

    Cisplatin-induced emesis: systematic review and meta-analysis of the ferret model and the effects of 5-HT3 receptor antagonists

    Get PDF
    PURPOSE: The ferret cisplatin emesis model has been used for ~30 years and enabled identification of clinically used anti-emetics. We provide an objective assessment of this model including efficacy of 5-HT(3) receptor antagonists to assess its translational validity. METHODS: A systematic review identified available evidence and was used to perform meta-analyses. RESULTS: Of 182 potentially relevant publications, 115 reported cisplatin-induced emesis in ferrets and 68 were included in the analysis. The majority (n = 53) used a 10 mg kg(−1) dose to induce acute emesis, which peaked after 2 h. More recent studies (n = 11) also used 5 mg kg(−1), which induced a biphasic response peaking at 12 h and 48 h. Overall, 5-HT(3) receptor antagonists reduced cisplatin (5 mg kg(−1)) emesis by 68% (45–91%) during the acute phase (day 1) and by 67% (48–86%) and 53% (38–68%, all P < 0.001), during the delayed phase (days 2, 3). In an analysis focused on the acute phase, the efficacy of ondansetron was dependent on the dosage and observation period but not on the dose of cisplatin. CONCLUSION: Our analysis enabled novel findings to be extracted from the literature including factors which may impact on the applicability of preclinical results to humans. It reveals that the efficacy of ondansetron is similar against low and high doses of cisplatin. Additionally, we showed that 5-HT(3) receptor antagonists have a similar efficacy during acute and delayed emesis, which provides a novel insight into the pharmacology of delayed emesis in the ferret

    Validation of a rapid, non-radioactive method to quantify internalisation of G-protein coupled receptors

    Get PDF
    Agonist exposure can cause internalisation of G-protein coupled receptors (GPCRs), which may be a part of desensitisation but also of cellular signaling. Previous methods to study internalisation have been tedious or only poorly quantitative. Therefore, we have developed and validated a quantitative method using a sphingosine-1-phosphate (S1P) receptor as a model. Because of a lack of suitable binding studies, it has been difficult to study S1P receptor internalisation. Using a N-terminal HisG-tag, S1P1 receptors on the cell membrane can be visualised via immunocytochemistry with a specific anti-HisG antibody. S1P-induced internalisation was concentration dependent and was quantified using a microplate reader, detecting either absorbance, a fluorescent or luminescent signal, depending on the antibodies used. Among those, the fluorescence detection method was the most convenient to use. The relative ease of this method makes it suitable to measure a large number of data points, e.g. to compare the potency and efficacy of receptor ligands

    From Corynebacterium glutamicum to Mycobacterium tuberculosis—towards transfers of gene regulatory networks and integrated data analyses with MycoRegNet

    Get PDF
    Year by year, approximately two million people die from tuberculosis, a disease caused by the bacterium Mycobacterium tuberculosis. There is a tremendous need for new anti-tuberculosis therapies (antituberculotica) and drugs to cope with the spread of tuberculosis. Despite many efforts to obtain a better understanding of M. tuberculosis' pathogenicity and its survival strategy in humans, many questions are still unresolved. Among other cellular processes in bacteria, pathogenicity is controlled by transcriptional regulation. Thus, various studies on M. tuberculosis concentrate on the analysis of transcriptional regulation in order to gain new insights on pathogenicity and other essential processes ensuring mycobacterial survival. We designed a bioinformatics pipeline for the reliable transfer of gene regulations between taxonomically closely related organisms that incorporates (i) a prediction of orthologous genes and (ii) the prediction of transcription factor binding sites. In total, 460 regulatory interactions were identified for M. tuberculosis using our comparative approach. Based on that, we designed a publicly available platform that aims to data integration, analysis, visualization and finally the reconstruction of mycobacterial transcriptional gene regulatory networks: MycoRegNet. It is a comprehensive database system and analysis platform that offers several methods for data exploration and the generation of novel hypotheses. MycoRegNet is publicly available at http://mycoregnet.cebitec.uni-bielefeld.de

    Multiple small RNAs identified in Mycobacterium bovis BCG are also expressed in Mycobacterium tuberculosis and Mycobacterium smegmatis

    Get PDF
    Tuberculosis (TB) is a major global health problem, infecting millions of people each year. The causative agent of TB, Mycobacterium tuberculosis, is one of the world’s most ancient and successful pathogens. However, until recently, no work on small regulatory RNAs had been performed in this organism. Regulatory RNAs are found in all three domains of life, and have already been shown to regulate virulence in well-known pathogens, such as Staphylococcus aureus and Vibrio cholera. Here we report the discovery of 34 novel small RNAs (sRNAs) in the TB-complex M. bovis BCG, using a combination of experimental and computational approaches. Putative homologues of many of these sRNAs were also identified in M. tuberculosis and/or M. smegmatis. Those sRNAs that are also expressed in the non-pathogenic M. smegmatis could be functioning to regulate conserved cellular functions. In contrast, those sRNAs identified specifically in M. tuberculosis could be functioning in mediation of virulence, thus rendering them potential targets for novel antimycobacterials. Various features and regulatory aspects of some of these sRNAs are discussed

    Mycobacterium tuberculosis acg Gene Is Required for Growth and Virulence In Vivo

    Get PDF
    Mycobacterium tuberculosis dosRS two-component regulatory system controls transcription of approximately 50 genes including hspX, acg and Rv2030c, in response to hypoxia and nitric oxide conditions and within macrophages and mice. The hspX lies between acg and Rv2030c. However, the functions of the dosR regulated genes in vitro and in vivo are largely unknown. Previously, we demonstrated that deletion of hspX gene produced a mutant which grew faster in macrophages and in mice. In this study, we attempted to determine the functions of acg and Rv2030c by gene inactivation. We demonstrate that Rv2030c is dispensable for virulence and growth. However, deletion of acg produced a mutant which is attenuated in both resting and activated macrophages and in acute and persistent murine infection models. Surprisingly, deletion of acg did not compromise the viability of the mutant to nitrosative and oxidative stresses in vitro and in vivo. In addition, when the WT and the acg mutants were treated with antibiotics such as the prodrugs nitrofurantoin and nitrofuran, the acg mutant became more sensitive than the WT strain to these drugs. This suggests that Acg may not function as a nitroreductase. These data indicate that acg encodes an essential virulence factor for M. tuberculosis and enables it to grow and survive in macrophages and in mouse organs

    An Anaerobic-Type α-Ketoglutarate Ferredoxin Oxidoreductase Completes the Oxidative Tricarboxylic Acid Cycle of Mycobacterium tuberculosis

    Get PDF
    Aerobic organisms have a tricarboxylic acid (TCA) cycle that is functionally distinct from those found in anaerobic organisms. Previous reports indicate that the aerobic pathogen Mycobacterium tuberculosis lacks detectable α-ketoglutarate (KG) dehydrogenase activity and drives a variant TCA cycle in which succinyl-CoA is replaced by succinic semialdehyde. Here, we show that M. tuberculosis expresses a CoA-dependent KG dehydrogenase activity, albeit one that is typically found in anaerobic bacteria. Unlike most enzymes of this family, the M. tuberculosis KG: ferredoxin oxidoreductase (KOR) is extremely stable under aerobic conditions. This activity is absent in a mutant strain deleted for genes encoding a previously uncharacterized oxidoreductase, and this strain is impaired for aerobic growth in the absence of sufficient amounts of CO2. Interestingly, inhibition of the glyoxylate shunt or exclusion of exogenous fatty acids alleviates this growth defect, indicating the presence of an alternate pathway that operates in the absence of β-oxidation. Simultaneous disruption of KOR and the first enzyme of the succinic semialdehyde pathway (KG decarboxylase; KGD) results in strict dependence upon the glyoxylate shunt for growth, demonstrating that KG decarboxylase is also functional in M. tuberculosis intermediary metabolism. These observations demonstrate that unlike most organisms M. tuberculosis utilizes two distinct TCA pathways from KG, one that functions concurrently with β-oxidation (KOR-dependent), and one that functions in the absence of β-oxidation (KGD-dependent). As these pathways are regulated by metabolic cues, we predict that their differential utilization provides an advantage for growth in different environments within the host
    corecore