349 research outputs found

    Multilevel Modular Mesocrystalline Organization in Red Coral

    Get PDF
    International audienceBiominerals can achieve complex shapes as aggregates of crystalline building blocks. In the red coral skeleton, we observe that these building blocks are arranged into eight hierarchical levels of similarly (but not identically) oriented modules. The modules in each hierarchical level assemble into larger units that comprise the next higher level of the hierarchy, and consist themselves of smaller, oriented modules. EBSD and TEM studies show that the degree of crystallographic misorientation between the building blocks decreases with decreasing module size. We observe this organization down to a few nm. Thus, the transition from imperfect crystallographic order at mm scale to nearly perfect single crystalline domains at nm scale is progressive. The concept of 'mesocrystal' involves the three-dimensional crystallographic organization of nanoparticles into a highly ordered mesostructure. We add to this concept the notion of 'multilevel modularity'. This modularity has potential implications for the origin of complex biomineral shapes in nature. A multilevel modular organization with small intermodular misorientations combines a simple construction scheme, ruled by crystallographic laws, with the possibility of complex shapes. If the observations we have made on red coral extend to other biominerals, long-range crystallographic order and interfaces at all scales may be key to how some biominerals achieve complex shapes adapted to the environment in which they grow

    Hawking Radiation on an Ion Ring in the Quantum Regime

    Full text link
    This paper discusses a recent proposal for the simulation of acoustic black holes with ions. The ions are rotating on a ring with an inhomogeneous, but stationary velocity profile. Phonons cannot leave a region, in which the ion velocity exceeds the group velocity of the phonons, as light cannot escape from a black hole. The system is described by a discrete field theory with a nonlinear dispersion relation. Hawking radiation is emitted by this acoustic black hole, generating entanglement between the inside and the outside of the black hole. We study schemes to detect the Hawking effect in this setup.Comment: 42 pages (one column), 17 figures, published revised versio

    Ab initio study of ferroelectric domain walls in PbTiO3

    Full text link
    We have investigated the atomistic structure of the 180-degree and 90-degree domain boundaries in the ferroelectric perovskite compound PbTiO3 using a first-principles ultrasoft-pseudopotential approach. For each case we have computed the position, thickness and creation energy of the domain walls, and an estimate of the barrier height for their motion has been obtained. We find both kinds of domain walls to be very narrow with a similar width of the order of one to two lattice constants. The energy of the 90-dergree domain wall is calculated to be 35 mJ/m^2, about a factor of four lower than the energy of its 180-degree counterpart, and only a miniscule barrier for its motion is found. As a surprising feature we detected a small offset of 0.15-0.2 eV in the electrostatic potential across the 90-degree domain wall.Comment: 12 pages, with 9 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/bm_dw/index.htm

    One-Dimensional Kronig-Penney Model with Positional Disorder: Theory versus Experiment

    Full text link
    We study the effects of random positional disorder in the transmission of waves in a 1D Kronig-Penny model. For weak disorder we derive an analytical expression for the localization length and relate it to the transmission coefficient for finite samples. The obtained results describe very well the experimental frequency dependence of the transmission in a microwave realization of the model. Our results can be applied both to photonic crystals and semiconductor super lattices.Comment: 9 pages, 6 figure

    Optical variabilities in Be/X-ray binary system:GRO J2058+42

    Get PDF
    We present an analysis of long-term optical monitoring observations and optical spectroscopic observations of the counterpart to CXOU J205847.5+414637 (high mass X-ray binary system). We search for a variability in the light curve of Be star. We used differential magnitudes in the time series analysis. The variability search in the optical light curve was made by using different algorithms. The reduction and analysis of spectra were done by using MIDAS and its suitable packages. We have performed a frequency search which gave us the value 2.404 1/day. This value is attributed to the non-radial pulsation of Be star. H alpha emission line profiles always show double-peaked emissions with a mean equivalent width of 2.31 \pm 0.19 \AA ~and a peak separation of 516 \pm 45 km/s. This suggests that Be star disk is still present. CXOU J205847.5+414637 is in X-ray quiescent state.Comment: 8 pages, 9 figures. To appear at Astronomy and Astrophysic

    Multi-epoch Near-Infrared Interferometry of the Spatially Resolved Disk Around the Be Star Zeta Tau

    Full text link
    We present interferometric observations of the Be star Zeta Tau obtained using the MIRC beam combiner at the CHARA Array. We resolved the disk during four epochs in 2007-2009. We fit the data with a geometric model to characterize the circumstellar disk as a skewed elliptical Gaussian and the central Be star as a uniform disk. The visibilities reveal a nearly edge-on disk with a FWHM major axis of ~ 1.8 mas in the H-band. The non-zero closure phases indicate an asymmetry within the disk. Interestingly, when combining our results with previously published interferometric observations of Zeta Tau, we find a correlation between the position angle of the disk and the spectroscopic V/R ratio, suggesting that the tilt of the disk is precessing. This work is part of a multi-year monitoring campaign to investigate the development and outward motion of asymmetric structures in the disks of Be stars.Comment: Accepted for publication in the Astronomical Journal. 27 pages, 7 Figure

    Self-pulsing effect in chaotic scattering

    Full text link
    We study the quantum and classical scattering of Hamiltonian systems whose chaotic saddle is described by binary or ternary horseshoes. We are interested in parameters of the system for which a stable island, associated with the inner fundamental periodic orbit of the system exists and is large, but chaos around this island is well developed. In this situation, in classical systems, decay from the interaction region is algebraic, while in quantum systems it is exponential due to tunneling. In both cases, the most surprising effect is a periodic response to an incoming wave packet. The period of this self-pulsing effect or scattering echoes coincides with the mean period, by which the scattering trajectories rotate around the stable orbit. This period of rotation is directly related to the development stage of the underlying horseshoe. Therefore the predicted echoes will provide experimental access to topological information. We numerically test these results in kicked one dimensional models and in open billiards.Comment: Submitted to New Journal of Physics. Two movies (not included) and full-resolution figures are available at http://www.cicc.unam.mx/~mejia

    Multi-periodicity of the Be star η Centauri from spectroscopic and photometric observations

    Get PDF
    Abstract. We present photometric data and 209 highresolution, high signal-to-noise ratio optical spectra of the Be star η Centauri obtained in 1993 and 1995, respectively. Time series analysis of these and other data, performed using the CLEAN, CLEANEST and Fourier Doppler Imaging techniques, show the presence of multiperiodic variations. They are interpreted in terms of low and high order non-radial pulsation modes. A strong frequency of 1.29 c/d is detected in line profile and photometric variations. It is attributed to a mode with l = 2. Other high amplitude signals present in spectroscopic data are 1.78 c/d, 3.82 c/d and 4.51 c/d. A frequency of 1.48 c/d appearing in spectroscopic data is compatible with the 1.56 c/d periodicity largely dominant in observations taken prior to 1993. The corresponding "superperiods" for four of the frequencies are commensurate at the 8% level. The star showed period and non-radial pulsation degree variations in timescales as short as ∼ 1.5 hour. The dominant mode apparently alternates between l = 2 and l = 4 every other day during the eight day time span. This could be a modulation linked to the superperiod or to the stellar rotation. The main periodicities detected in our analysis are compatible with theoretical unstable g modes in SPB variables. Short time scale variability (1 − 3 hr), typical of high-order p modes is also systematically present

    Collective excitations in the neutron star inner crust

    Full text link
    We study the spectrum of collective excitations in the inhomogeneous phases in the neutron star inner crust within a superfluid hydrodynamics approach. Our aim is to describe the whole range of wavelengths, from the long-wavelength limit which can be described by macroscopic approaches and which is crucial for the low-energy part of the spectrum, to wavelengths of the order of the dimensions of the Wigner-Seitz cells, corresponding to the modes usually described in microscopic calculations. As an application, we will discuss the contribution of these collective modes to the specific heat of the "lasagna" phase in comparison with other known contributions.Comment: 10 pages, 4 figures, v2: one reference added and typos correcte
    corecore