47 research outputs found

    Variable Selection in Partial Least Squares Methods: overview and recent developments

    Get PDF
    Recent developments in technology enable collecting a large amount of data from various sources. Moreover, many real world applications require studying relations among several groups of variables. The analysis of landscape matrices, i.e. matrices having more columns (variables, p) than rows (observations, n), is a challenging task in several domains. Two different kinds of problems arise when dealing with high dimensional data sets characterized by landscape matrices. The first refers to computational and numerical problems. The second deals with the difficulty in assessing and understanding the results. Dimension reduction seems to be a solution to solve both problems. We should distinguish between feature selection and feature extraction. The first refers to variable selection, while feature extraction aims to transform the data from high-dimensional space to low-dimensional space. Partial Least Squares (PLS) methods are classical feature extraction tools that work in the case of high-dimensional data sets. Since PLS methods do not require matrices inversion or diagonalization, they allow us to solve computational problems. However, results interpretation is still a hard problem when facing with very high-dimensional data sets. Moreover, recently Chun & Keles (2010) showed that asymptotic consistency of PLS regression estimator for the univariate case does not hold with the very large p and small n paradigm. Nowadays interest is increasing in developing new PLS methods able to be, at the same time, a feature extraction tool and a feature selection method. The first attempt to perform variable selection in univariate PLS Regression framework was presented by Bastien et al. in 2005. More recently Le Cao et al. (2008) and Chun & Keles (2010) proposed two different approaches to include variable selection in PLS Regression, based on L1 penalization (Tibshirani, 1996). In our work, we will investigate all these approaches and discuss the pros and cons. Moreover, a new version of PLS Path Modeling algorithm including variable selection will be presented

    Multivariate methods for the joint analysis of neuroimaging and genetic data

    No full text
    L'imagerie cérébrale connaît un intérêt grandissant, en tant que phénotype intermédiaire, dans la compréhension du chemin complexe qui relie les gènes à un phénotype comportemental ou clinique. Dans ce contexte, un premier objectif est de proposer des méthodes capables d'identifier la part de variabilité génétique qui explique une certaine part de la variabilité observée en neuroimagerie. Les approches univariées classiques ignorent les effets conjoints qui peuvent exister entre plusieurs gènes ou les covariations potentielles entre régions cérébrales.Notre première contribution a été de chercher à améliorer la sensibilité de l'approche univariée en tirant avantage de la nature multivariée des données génétiques, au niveau local. En effet, nous adaptons l'inférence au niveau du cluster en neuroimagerie à des données de polymorphismes d'un seul nucléotide (SNP), en cherchant des clusters 1D de SNPs adjacents associés à un même phénotype d'imagerie. Ensuite, nous prolongeons cette idée et combinons les clusters de voxels avec les clusters de SNPs, en utilisant un test simple au niveau du "cluster 4D", qui détecte conjointement des régions cérébrale et génomique fortement associées. Nous obtenons des résultats préliminaires prometteurs, tant sur données simulées que sur données réelles.Notre deuxième contribution a été d'utiliser des méthodes multivariées exploratoires pour améliorer la puissance de détection des études d'imagerie génétique, en modélisant la nature multivariée potentielle des associations, à plus longue échelle, tant du point de vue de l'imagerie que de la génétique. La régression Partial Least Squares et l'analyse canonique ont été récemment proposées pour l'analyse de données génétiques et transcriptomiques. Nous proposons ici de transposer cette idée à l'analyse de données de génétique et d'imagerie. De plus, nous étudions différentes stratégies de régularisation et de réduction de dimension, combinées avec la PLS ou l'analyse canonique, afin de faire face au phénomène de sur-apprentissage dû aux très grandes dimensions des données. Nous proposons une étude comparative de ces différentes stratégies, sur des données simulées et des données réelles d'IRM fonctionnelle et de SNPs. Le filtrage univarié semble nécessaire. Cependant, c'est la combinaison du filtrage univarié et de la PLS régularisée L1 qui permet de détecter une association généralisable et significative sur les données réelles, ce qui suggère que la découverte d'associations en imagerie génétique nécessite une approche multivariée.Brain imaging is increasingly recognised as an interesting intermediate phenotype to understand the complex path between genetics and behavioural or clinical phenotypes. In this context, a first goal is to propose methods to identify the part of genetic variability that explains some neuroimaging variability. Classical univariate approaches often ignore the potential joint effects that may exist between genes or the potential covariations between brain regions. Our first contribution is to improve the sensitivity of the univariate approach by taking advantage of the multivariate nature of the genetic data in a local way. Indeed, we adapt cluster-inference techniques from neuroimaging to Single Nucleotide Polymorphism (SNP) data, by looking for 1D clusters of adjacent SNPs associated with the same imaging phenotype. Then, we push further the concept of clusters and we combined voxel clusters and SNP clusters, by using a simple 4D cluster test that detects conjointly brain and genome regions with high associations. We obtain promising preliminary results on both simulated and real datasets .Our second contribution is to investigate exploratory multivariate methods to increase the detection power of imaging genetics studies, by accounting for the potential multivariate nature of the associations, at a longer range, on both the imaging and the genetics sides. Recently, Partial Least Squares (PLS) regression or Canonical Correlation Analysis (CCA) have been proposed to analyse genetic and transcriptomic data. Here, we propose to transpose this idea to the genetics vs. imaging context. Moreover, we investigate the use of different strategies of regularisation and dimension reduction techniques combined with PLS or CCA, to face the overfitting issues due to the very high dimensionality of the data. We propose a comparison study of the different strategies on both a simulated dataset and a real fMRI and SNP dataset. Univariate selection appears to be necessary to reduce the dimensionality. However, the generalisable and significant association uncovered on the real dataset by the two-step approach combining univariate filtering and L1-regularised PLS suggests that discovering meaningful imaging genetics associations calls for a multivariate approach

    Méthodes multivariées pour l'analyse jointe de données de neuroimagerie et de génétique

    Get PDF
    Brain imaging is increasingly recognised as an interesting intermediate phenotype to understand the complex path between genetics and behavioural or clinical phenotypes. In this context, a first goal is to propose methods to identify the part of genetic variability that explains some neuroimaging variability. Classical univariate approaches often ignore the potential joint effects that may exist between genes or the potential covariations between brain regions. Our first contribution is to improve the sensitivity of the univariate approach by taking advantage of the multivariate nature of the genetic data in a local way. Indeed, we adapt cluster-inference techniques from neuroimaging to Single Nucleotide Polymorphism (SNP) data, by looking for 1D clusters of adjacent SNPs associated with the same imaging phenotype. Then, we push further the concept of clusters and we combined voxel clusters and SNP clusters, by using a simple 4D cluster test that detects conjointly brain and genome regions with high associations. We obtain promising preliminary results on both simulated and real datasets .Our second contribution is to investigate exploratory multivariate methods to increase the detection power of imaging genetics studies, by accounting for the potential multivariate nature of the associations, at a longer range, on both the imaging and the genetics sides. Recently, Partial Least Squares (PLS) regression or Canonical Correlation Analysis (CCA) have been proposed to analyse genetic and transcriptomic data. Here, we propose to transpose this idea to the genetics vs. imaging context. Moreover, we investigate the use of different strategies of regularisation and dimension reduction techniques combined with PLS or CCA, to face the overfitting issues due to the very high dimensionality of the data. We propose a comparison study of the different strategies on both a simulated dataset and a real fMRI and SNP dataset. Univariate selection appears to be necessary to reduce the dimensionality. However, the generalisable and significant association uncovered on the real dataset by the two-step approach combining univariate filtering and L1-regularised PLS suggests that discovering meaningful imaging genetics associations calls for a multivariate approach.L'imagerie cérébrale connaît un intérêt grandissant, en tant que phénotype intermédiaire, dans la compréhension du chemin complexe qui relie les gènes à un phénotype comportemental ou clinique. Dans ce contexte, un premier objectif est de proposer des méthodes capables d'identifier la part de variabilité génétique qui explique une certaine part de la variabilité observée en neuroimagerie. Les approches univariées classiques ignorent les effets conjoints qui peuvent exister entre plusieurs gènes ou les covariations potentielles entre régions cérébrales.Notre première contribution a été de chercher à améliorer la sensibilité de l'approche univariée en tirant avantage de la nature multivariée des données génétiques, au niveau local. En effet, nous adaptons l'inférence au niveau du cluster en neuroimagerie à des données de polymorphismes d'un seul nucléotide (SNP), en cherchant des clusters 1D de SNPs adjacents associés à un même phénotype d'imagerie. Ensuite, nous prolongeons cette idée et combinons les clusters de voxels avec les clusters de SNPs, en utilisant un test simple au niveau du "cluster 4D", qui détecte conjointement des régions cérébrale et génomique fortement associées. Nous obtenons des résultats préliminaires prometteurs, tant sur données simulées que sur données réelles.Notre deuxième contribution a été d'utiliser des méthodes multivariées exploratoires pour améliorer la puissance de détection des études d'imagerie génétique, en modélisant la nature multivariée potentielle des associations, à plus longue échelle, tant du point de vue de l'imagerie que de la génétique. La régression Partial Least Squares et l'analyse canonique ont été récemment proposées pour l'analyse de données génétiques et transcriptomiques. Nous proposons ici de transposer cette idée à l'analyse de données de génétique et d'imagerie. De plus, nous étudions différentes stratégies de régularisation et de réduction de dimension, combinées avec la PLS ou l'analyse canonique, afin de faire face au phénomène de sur-apprentissage dû aux très grandes dimensions des données. Nous proposons une étude comparative de ces différentes stratégies, sur des données simulées et des données réelles d'IRM fonctionnelle et de SNPs. Le filtrage univarié semble nécessaire. Cependant, c'est la combinaison du filtrage univarié et de la PLS régularisée L1 qui permet de détecter une association généralisable et significative sur les données réelles, ce qui suggère que la découverte d'associations en imagerie génétique nécessite une approche multivariée

    Multivariate methods for the joint analysis of neuroimaging and genetic data

    No full text
    L'imagerie cérébrale connaît un intérêt grandissant, en tant que phénotype intermédiaire, dans la compréhension du chemin complexe qui relie les gènes à un phénotype comportemental ou clinique. Dans ce contexte, un premier objectif est de proposer des méthodes capables d'identifier la part de variabilité génétique qui explique une certaine part de la variabilité observée en neuroimagerie. Les approches univariées classiques ignorent les effets conjoints qui peuvent exister entre plusieurs gènes ou les covariations potentielles entre régions cérébrales.Notre première contribution a été de chercher à améliorer la sensibilité de l'approche univariée en tirant avantage de la nature multivariée des données génétiques, au niveau local. En effet, nous adaptons l'inférence au niveau du cluster en neuroimagerie à des données de polymorphismes d'un seul nucléotide (SNP), en cherchant des clusters 1D de SNPs adjacents associés à un même phénotype d'imagerie. Ensuite, nous prolongeons cette idée et combinons les clusters de voxels avec les clusters de SNPs, en utilisant un test simple au niveau du "cluster 4D", qui détecte conjointement des régions cérébrale et génomique fortement associées. Nous obtenons des résultats préliminaires prometteurs, tant sur données simulées que sur données réelles.Notre deuxième contribution a été d'utiliser des méthodes multivariées exploratoires pour améliorer la puissance de détection des études d'imagerie génétique, en modélisant la nature multivariée potentielle des associations, à plus longue échelle, tant du point de vue de l'imagerie que de la génétique. La régression Partial Least Squares et l'analyse canonique ont été récemment proposées pour l'analyse de données génétiques et transcriptomiques. Nous proposons ici de transposer cette idée à l'analyse de données de génétique et d'imagerie. De plus, nous étudions différentes stratégies de régularisation et de réduction de dimension, combinées avec la PLS ou l'analyse canonique, afin de faire face au phénomène de sur-apprentissage dû aux très grandes dimensions des données. Nous proposons une étude comparative de ces différentes stratégies, sur des données simulées et des données réelles d'IRM fonctionnelle et de SNPs. Le filtrage univarié semble nécessaire. Cependant, c'est la combinaison du filtrage univarié et de la PLS régularisée L1 qui permet de détecter une association généralisable et significative sur les données réelles, ce qui suggère que la découverte d'associations en imagerie génétique nécessite une approche multivariée.Brain imaging is increasingly recognised as an interesting intermediate phenotype to understand the complex path between genetics and behavioural or clinical phenotypes. In this context, a first goal is to propose methods to identify the part of genetic variability that explains some neuroimaging variability. Classical univariate approaches often ignore the potential joint effects that may exist between genes or the potential covariations between brain regions. Our first contribution is to improve the sensitivity of the univariate approach by taking advantage of the multivariate nature of the genetic data in a local way. Indeed, we adapt cluster-inference techniques from neuroimaging to Single Nucleotide Polymorphism (SNP) data, by looking for 1D clusters of adjacent SNPs associated with the same imaging phenotype. Then, we push further the concept of clusters and we combined voxel clusters and SNP clusters, by using a simple 4D cluster test that detects conjointly brain and genome regions with high associations. We obtain promising preliminary results on both simulated and real datasets .Our second contribution is to investigate exploratory multivariate methods to increase the detection power of imaging genetics studies, by accounting for the potential multivariate nature of the associations, at a longer range, on both the imaging and the genetics sides. Recently, Partial Least Squares (PLS) regression or Canonical Correlation Analysis (CCA) have been proposed to analyse genetic and transcriptomic data. Here, we propose to transpose this idea to the genetics vs. imaging context. Moreover, we investigate the use of different strategies of regularisation and dimension reduction techniques combined with PLS or CCA, to face the overfitting issues due to the very high dimensionality of the data. We propose a comparison study of the different strategies on both a simulated dataset and a real fMRI and SNP dataset. Univariate selection appears to be necessary to reduce the dimensionality. However, the generalisable and significant association uncovered on the real dataset by the two-step approach combining univariate filtering and L1-regularised PLS suggests that discovering meaningful imaging genetics associations calls for a multivariate approach.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    Clustering and variable selection evaluation of 13 unsupervised methods for multi-omics data integration

    No full text
    International audienceRecent advances in NGS sequencing, microarrays and mass spectrometry for omics data production have enabled the generation and collection of different modalities of high-dimensional molecular data. The integration of multiple omics datasets is a statistical challenge, due to the limited number of individuals, the high number of variables and the heterogeneity of the datasets to integrate. Recently, a lot of tools have been developed to solve the problem of integrating omics data including canonical correlation analysis, matrix factorization and SM. These commonly used techniques aim to analyze simultaneously two or more types of omics. In this article, we compare a panel of 13 unsupervised methods based on these different approaches to integrate various types of multi-omics datasets: iClusterPlus, regularized generalized canonical correlation analysis, sparse generalized canonical correlation analysis, multiple co-inertia analysis (MCIA), integrative-NMF (intNMF), SNF, MoCluster, mixKernel, CIMLR, LRAcluster, ConsensusClustering, PINSPlus and multi-omics factor analysis (MOFA). We evaluate the ability of the methods to recover the subgroups and the variables that drive the clustering on eight benchmarks of simulation. MOFA does not provide any results on these benchmarks. For clustering, SNF, MoCluster, CIMLR, LRAcluster, ConsensusClustering and intNMF provide the best results. For variable selection, MoCluster outperforms the others. However, the performance of the methods seems to depend on the heterogeneity of the datasets (especially for MCIA, intNMF and iClusterPlus). Finally, we apply the methods on three real studies with heterogeneous data and various phenotypes. We conclude that MoCluster is the best method to analyze these omics data. Availability: An R package named CrIMMix is available on GitHub at https://github.com/CNRGH/crimmix to reproduce all the results of this article
    corecore