175 research outputs found

    Magnetoresistance in Fe1x_{1-x}Gax_x thin films presenting striped magnetic pattern: the role of closure domains and domain walls

    Full text link
    In this work we show the existence of closure domains in Fe1x_{1-x}Gax_x thin films featuring a striped magnetic pattern and study the effect of the magnetic domain arrangement on the magnetotransport properties. By means of X-ray resonant magnetic scattering, we experimentally demonstrate the presence of such closure domains and estimate their sizes and relative contribution to surface magnetization. Magnetotransport experiments show that the behavior of the magnetoresistance depends on the measurement geometry as well as on the temperature. When the electric current ows perpendicular to the stripe direction, the resistivity decreases when a magnetic field is applied along the stripe direction (negative magnetoresistance) in all the studied temperature range, and the calculations indicate that the main source is the anisotropic magnetoresistance. In the case of current flowing parallel to the stripe domains, the magnetoresistance changes sign, being positive at room temperature and negative at 100 K. To explain this behavior, the contribution to magnetoresistance from the domain walls must be considered besides the anisotropic one.Comment: 8 pages, 5 figure

    Soft x ray tomoholography

    Get PDF
    We demonstrate an x ray imaging method that combines Fourier transform holography with tomography tomoholography for threedimensional 3D microscopic imaging. A 3D image of a diatom shell with a spatial resolution of 140 nm is presented. The experiment is realized by using a small gold sphere as the reference wave source for holographic imaging. This setup allows us to rotate the sample and to collect a number of 2D projections for tomograph

    Observation and formation mechanism of 360° domain wall rings in synthetic anti-ferromagnets with interlayer chiral interactions

    Get PDF
    The interlayer Dzyaloshinskii–Moriya interaction (IL-DMI) chirally couples spins in different ferromagnetic layers of multilayer heterostructures. So far, samples with IL-DMI have been investigated utilizing magnetometry and magnetotransport techniques, where the interaction manifests as a tunable chiral exchange bias field. Here, we investigate the nanoscale configuration of the magnetization vector in a synthetic anti-ferromagnet (SAF) with IL-DMI, after applying demagnetizing field sequences. We add different global magnetic field offsets to the demagnetizing sequence in order to investigate the states that form when the IL-DMI exchange bias field is fully or partially compensated. For magnetic imaging and vector reconstruction of the remanent magnetic states, we utilize x-ray magnetic circular dichroism photoemission electron microscopy, evidencing the formation of 360° domain wall rings of typically 0.5–3.0 μm in diameter. These spin textures are only observed when the exchange bias field due to the IL-DMI is not perfectly compensated by the magnetic field offset. From a combination of micromagnetic simulations, magnetic charge distribution, and topology arguments, we conclude that a non-zero remanent effective field with components both parallel and perpendicular to the anisotropy axis of the SAF is necessary to observe the rings. This work shows how the exchange bias field due to IL-DMI can lead to complex metastable spin states during reversal, important for the development of future spintronic devices

    Endstation for ultrafast magnetic scattering experiments at the free-electron laser in Hamburg

    Get PDF
    This content may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This material originally appeared in Review of Scientific Instruments 84, 013906 (2013) and may be found at https://doi.org/10.1063/1.4773543.An endstation for pump–probe small-angle X-ray scattering (SAXS) experiments at the free-electron laser in Hamburg (FLASH) is presented. The endstation houses a solid-state absorber, optical incoupling for pump–probe experiments, time zero measurement, sample chamber, and detection unit. It can be used at all FLASH beamlines in the whole photon energy range offered by FLASH. The capabilities of the setup are demonstrated by showing the results of resonant magnetic SAXS measurements on cobalt-platinum multilayer samples grown on freestanding Si3N4 membranes and pump-laser-induced grid structures in multilayer samples.BMBF, 05K10GU4, Verbundprojekt: FSP 301 - FLASH: Nanoskopische Systeme. Teilprojekt 6: Aufbau einer Plattform für Experimente mit ultimativer Orts- und Zeitauflösung unter Ausnutzung der kohärenten Beugung weicher Röntgenstrahlung an PETRA III und FLASHDFG, 13002249, SFB 668: Magnetismus vom Einzelatom zur NanostrukturDFG, 170620586, SFB 925: Licht-induzierte Dynamik und Kontrolle korrelierter Quantensystem

    Prevalence of enteropathogenic viruses and molecular characterization of group A rotavirus among children with diarrhea in Dar es Salaam Tanzania

    Get PDF
    Different groups of viruses have been shown to be responsible for acute diarrhea among children during their first few years of life. Epidemiological knowledge of viral agents is critical for the development of effective preventive measures, including vaccines. In this study we determined the prevalence of the four major enteropathogenic viruses - rotavirus, norovirus, adenovirus and astrovirus - was determined in 270 stool samples collected from children aged 0 - 60 months who were admitted with diarrhea in four hospitals in Dar es Salaam, Tanzania, using commercially available ELISA kits. In addition, the molecular epidemiology of group A rotavirus was investigated using reverse transcriptase multiplex polymerase chain reaction (RT-PCR). At least one viral agent was detected in 87/270 (32.2%) of the children. The prevalence of rotavirus, norovirus, adenovirus and astrovirus was 18.1%, 13.7%, 2.6% and 0.4%, respectively. In most cases (62.1%) of viruses were detected in children aged 7-12 months. The G and P types (VP7 and VP4 genotypes respectively) were further investigated in 49 rotavirus ELISA positive samples. G9 was the predominant G type (81.6%), followed by G1 (10.2%) and G3 (0.2%). P[8] was the predominant P type (83.7%), followed by P[6] (0.4%) and P[4] (0.2%). The following G and P types were not detected in this study population; G2, G4, G8 G10, P[9], P[10] and P[11]. The dominating G/P combination was G9P[8], accounting for 39 (90.7%) of the 43 fully characterized strains. Three (6.1%) of the 49 rotavirus strains could not be typed. Nearly one third of children with diarrhea admitted to hospitals in Dar es Salaam had one of the four viral agents. The predominance of rotavirus serotype G9 may have implication for rotavirus vaccination in Tanzania
    corecore