275 research outputs found

    Environmental drivers of gulf coast tick range expansion in the United States

    Get PDF
    In the United States, the Gulf Coast tick (Amblyomma maculatum) is a species of growing medical and veterinary significance, serving as the primary vector of the pathogenic bacterium, Rickettsia parkeri, in humans and the apicomplexan parasite, Hepatozoon americanum, in canines. Ongoing reports of A. maculatum from areas outside its core distribution in the southeastern United States suggest the possibility of current and continuing range expansion. Using an ecological niche modeling approach, I combined new occurrence records with high-resolution climate and land cover data to investigate environmental drivers of the current distribution of A. maculatum in the United States. I found that environmental suitability for A. maculatum varied regionally and was primarily driven by climatic factors such as annual temperature variation and seasonality of precipitation. I also found that presence of A. maculatum was associated with open habitat with minimal canopy cover. My model predicts large areas beyond the current distribution of A. maculatum to be environmentally suitable, suggesting the possibility of future northward and westward range expansion. These predictions of environmental suitability may be used to identify areas at potential risk for establishment and to guide future surveillance of A. maculatum in the United States

    Honey Bee and Bumble Bee Antiviral Defense

    Get PDF
    Bees are important plant pollinators in both natural and agricultural ecosystems. Managed and wild bees have experienced high average annual colony losses, population declines, and local extinctions in many geographic regions. Multiple factors, including virus infections, impact bee health and longevity. The majority of bee-infecting viruses are positive-sense single-stranded RNA viruses. Bee-infecting viruses often cause asymptomatic infections but may also cause paralysis, deformity or death. The severity of infection is governed by bee host immune responses and influenced by additional biotic and abiotic factors. Herein, we highlight studies that have contributed to the current understanding of antiviral defense in bees, including the Western honey bee (Apis mellifera), the Eastern honey bee (Apis cerana) and bumble bee species (Bombus spp.). Bee antiviral defense mechanisms include RNA interference (RNAi), endocytosis, melanization, encapsulation, autophagy and conserved immune pathways including Jak/STAT (Janus kinase/signal transducer and activator of transcription), JNK (c-Jun N-terminal kinase), MAPK (mitogen-activated protein kinases) and the NF-κB mediated Toll and Imd (immune deficiency) pathways. Studies in Dipteran insects, including the model organism Drosophila melanogaster and pathogen-transmitting mosquitos, provide the framework for understanding bee antiviral defense. However, there are notable differences such as the more prominent role of a non-sequence specific, dsRNA-triggered, virus limiting response in honey bees and bumble bees. This virus-limiting response in bees is akin to pathways in a range of organisms including other invertebrates (i.e., oysters, shrimp and sand flies), as well as the mammalian interferon response. Current and future research aimed at elucidating bee antiviral defense mechanisms may lead to development of strategies that mitigate bee losses, while expanding our understanding of insect antiviral defense and the potential evolutionary relationship between sociality and immune function

    Heat treatment significantly increases the sharpness of silcrete stone tools

    Get PDF
    Humans were regularly heat-treating stone tool raw materials as early as 130,000 years ago. The late Middle Stone Age (MSA) and Late Stone Age (LSA) of South Africa's Western Cape region provides some of the earliest and most pervasive archaeological evidence for this behaviour. While archaeologists are beginning to understand the flaking implications of raw material heat treatment, its potential functional benefits remain unanswered. Using silcrete from the Western Cape region, we investigate the impact of heat treatment on stone tool cutting performance. We quantify the sharpness of silcrete in its natural, unheated form, before comparing it with silcrete heated in three different conditions. Results show that heat-treated silcrete can be significantly sharper than unheated alternatives, with cutting forces halving and energy requirements reducing by approximately two-thirds. The data suggest that silcrete may have been heat treated during the South African MSA and LSA to increase the sharpness and performance of stone cutting edges. This early example of material engineering has implications for understanding Stone Age populations’ technological capabilities, inventiveness and raw material choices. We predict that heat-treatment behaviours in other prehistoric and ethnographic contexts may also be linked to increases in edge sharpness and concerns about functional performance

    The occurrence of tarsal injuries in male mice of C57BL/6N substrains in multiple international mouse facilities.

    Get PDF
    Dislocation in hindlimb tarsals are being observed at a low, but persistent frequency in group-housed adult male mice from C57BL/6N substrains. Clinical signs included a sudden onset of mild to severe unilateral or bilateral tarsal abduction, swelling, abnormal hindlimb morphology and lameness. Contraction of digits and gait abnormalities were noted in multiple cases. Radiographical and histological examination revealed caudal dislocation of the calcaneus and partial dislocation of the calcaneoquartal (calcaneus-tarsal bone IV) joint. The detection, frequency, and cause of this pathology in five large mouse production and phenotyping centres (MRC Harwell, UK; The Jackson Laboratory, USA; The Centre for Phenogenomics, Canada; German Mouse Clinic, Germany; Baylor College of Medicine, USA) are discussed
    corecore