
 

 

 

 

 

ENVIRONMENTAL DRIVERS OF GULF COAST TICK RANGE EXPANSION IN THE 

UNITED STATES 

 

 

 

 

 

 

 

BY 

 

J. MATTHEW FLENNIKEN 

 

 

 

 

 

 

 

THESIS 

 

Submitted in partial fulfillment of the requirements  

for the degree of Master of Science in Entomology  

in the Graduate College of the 

University of Illinois Urbana-Champaign, 2021 

 

 

 

Urbana, Illinois 

 

 

 

Master’s Committee: 

 

 Professor Brian Allan, Chair and Director of Research 

 Dr. Chris Stone 

 Dr. Holly Tuten 

 Dr. Hannah Vineer, University of Liverpool 

 

  



ii 

ABSTRACT 

 

In the United States, the Gulf Coast tick (Amblyomma maculatum) is a species of 

growing medical and veterinary significance, serving as the primary vector of the pathogenic 

bacterium, Rickettsia parkeri, in humans and the apicomplexan parasite, Hepatozoon 

americanum, in canines. Ongoing reports of A. maculatum from areas outside its core 

distribution in the southeastern United States suggest the possibility of current and continuing 

range expansion. Using an ecological niche modeling approach, I combined new occurrence 

records with high-resolution climate and land cover data to investigate environmental drivers of 

the current distribution of A. maculatum in the United States. I found that environmental 

suitability for A. maculatum varied regionally and was primarily driven by climatic factors such 

as annual temperature variation and seasonality of precipitation. I also found that presence of A. 

maculatum was associated with open habitat with minimal canopy cover. My model predicts 

large areas beyond the current distribution of A. maculatum to be environmentally suitable, 

suggesting the possibility of future northward and westward range expansion. These predictions 

of environmental suitability may be used to identify areas at potential risk for establishment and 

to guide future surveillance of A. maculatum in the United States. 
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CHAPTER 1: INTRODUCTION 

 

Emerging infectious diseases pose an imminent threat to the health and prosperity of 

communities around the world. More than 60% of emerging infectious diseases are zoonotic in 

origin, meaning they are transmitted to humans from wildlife (Jones et al. 2008). Among 

zoonotic diseases, those transmitted to humans via the bite of a blood-feeding arthropod (vector-

borne zoonotic diseases) are emerging at a faster rate than directly transmitted human diseases 

despite making up a smaller fraction of total infectious diseases (Swei et al. 2020). Tick-borne 

diseases represent an especially significant threat to human health. Compared to other blood-

feeding arthropods like mosquitoes and fleas, ticks transmit the widest variety of disease-causing 

microorganisms to humans (Sonenshine and Roe 2013). Included among these are the causative 

agents of Lyme disease (Borrelia burgdorferi, B. mayonii), Rocky Mountain spotted fever 

(Rickettsia rickettsii), and Crimean-Congo hemorrhagic fever (Crimean-Congo hemorrhagic 

fever virus). 

In North America, the Gulf Coast tick (Amblyomma maculatum) has emerged as a species 

of considerable importance to human and animal health. Amblyomma maculatum is the primary 

vector of Rickettsia parkeri (Paddock et al. 2004), a pathogenic bacterium responsible for an 

emerging spotted fever group rickettsiosis whose clinical presentation in humans closely 

resembles that of Rocky Mountain spotted fever (Paddock et al. 2008). Infection with R. parkeri 

is likely to result in persistent fever and fatigue and may be increasing in prevalence in the 

United States (Paddock and Goddard 2015). Amblyomma maculatum is also a vector of 

Hepatozoon americanum (the causative agent of American canine hepatozoonosis), making it a 

species of significant veterinary importance (Mathew et al. 1998). 

Amblyomma maculatum is native to the western hemisphere and is currently distributed 

throughout broad portions of the Americas. Historically, the distribution of A. maculatum in the 

United States has been described as restricted to the southeastern and south-central states, 

particularly those along the Gulf Coast (Hooker 1912). However, increasing reports over the last 

50 years of A. maculatum from areas outside this range have highlighted the need for a 

reassessment of the distribution of this species in the United States (Teel et al. 2010). Recently, 

established populations of A. maculatum have been identified in Arizona (Allerdice et al. 2017), 

Illinois (Phillips et al. 2020), and Connecticut (Molaei et al. 2021), suggesting northward and 
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westward range expansion. Range expansion of A. maculatum is of particular concern to public 

health due to the resulting increase in distributional overlap with the more common and 

widespread lone star tick (A. americanum). While A. maculatum currently serves as the primary 

vector of R. parkeri, spill-over into A. americanum individuals via co-feeding could amplify 

transmission of R. parkeri to humans (Wright et al. 2015). Range expansion of A. maculatum and 

R. parkeri may also result in increased misdiagnosis of different spotted fever group rickettsioses 

owing to a lack of taxonomic specificity in tests for human infection. 

Range expansion of A. maculatum in North America is likely facilitated by long-distance 

dispersal of juvenile ticks by migratory birds as well as by inter-state transport of cattle (Teel et 

al. 2010, Florin et al. 2014, Paddock and Goddard 2015). Juvenile ticks typically parasitize 

ground-foraging birds and small mammals – often rodents – while adults are more commonly 

found on large mammals such as white-tailed deer, cattle, and swine (Teel et al. 2010). Given the 

diversity of common hosts used by A. maculatum, it is unlikely that its distribution in North 

America is limited by host availability (Sonenshine 2018). Conversely, availability of suitable 

habitat appears to be an important factor in predicting the presence of A. maculatum (Nadolny 

and Gaff 2018). In Virginia, Nadolny and Gaff (2018) found that open, xeric habitats dominated 

by grasses and shrubs were most strongly associated with the presence of established A. 

maculatum populations. In Texas and neighboring states, habitat associations include coastal 

upland and tallgrass prairies (Scifres et al. 1988, Teel et al. 2010). High rainfall, temperature, and 

humidity have also been cited as important environmental factors for supporting A. maculatum 

populations (Paddock and Goddard 2015). However, apart from these regional descriptions, a 

critical analysis of A. maculatum habitat associations is lacking. 

As tick species distributions continue to expand or otherwise shift in response to 

anthropogenic climate and land-use change (Ogden 2006, Dergousoff et al. 2013, Swei et al. 

2020), there is an increasing need to understand the biotic and abiotic associations underpinning 

current distributions. With the advent of modern remote sensing technologies and the increasing 

availability of species occurrence data, ecological niche modeling has emerged as a powerful 

tool for understanding the environmental drivers of species distributions. Ecological niche 

modeling refers to a statistical approach by which species occurrence records are compared 

against relevant environmental covariates to identify associations and make predictions about 

environmental suitability for the species being modeled (Merow et al. 2013). Here, I use the 
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popular ecological niche modeling software, MaxEnt, to investigate habitat associations for A. 

maculatum and provide an assessment of its potential distribution in the United States.  
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CHAPTER 2: METHODS 

 

2.1 Occurrence data 

 

Occurrence data for A. maculatum were derived from three sources: (1) field collections, 

(2) scientific literature, and (3) the Global Biodiversity Information Facility (GBIF). 

 

2.1.1 Field collections 

 

Ticks were sampled from 53 sites in Illinois during the summer of 2020 using standard 

drag sampling techniques. Sites were selected for sampling based on previously documented 

habitat and host associations identified by Teel et al. (2010) and Nadolny and Gaff (2018), as 

well as previously recorded sites of A. maculatum occurrence from Phillips et al. (2020). In 

accordance with US Centers for Disease Control and Prevention standards for tick collections 

(Centers for Disease Control and Prevention 2020), a minimum of five 150-meter transects were 

drag-sampled at each site, and up to ten transects were drag-sampled at sites where A. maculatum 

was collected. In total, 350 total transects were sampled at the 53 sites. Drag cloths were checked 

at 10-meter intervals along each transect and any ticks present were immediately removed with 

forceps and placed in 85% ethanol for later identification using taxonomic keys (Keirans and 

Litwak 1989) and morphological descriptions (Mertins et al. 2010, Lado et al. 2018). Transect 

locations were selected to represent the heterogeneity of each site (i.e., edge/core habitat, 

upland/lowland features, etc.). GPS coordinates were obtained at the beginning of each transect 

and any transect that yielded A. maculatum was recorded as a presence (uncertainty = 150 m). 

 

2.1.2 Literature search 

 

A search of the Web of Science Core Collection using key words “Amblyomma 

maculatum” or “Gulf Coast tick” returned 405 results. Of these, 35 studies reported collection of 

A. maculatum from the environment (i.e., not attached to a host) and provided information on the 

sampling location. These collection records were georeferenced according to Chapman and 

Wieczorek (2020) and records with a final coordinate uncertainty of less than 1,000 meters were 
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retained as presence records. A maximum uncertainty threshold of 1,000 meters was applied to 

all occurrence data to ensure that the uncertainty associated with occurrence data did not exceed 

the uncertainty associated with any environmental covariates used in model development. 

 

2.1.3 Global Biodiversity Information Facility (GBIF) 

 

Occurrence records and associated metadata for A. maculatum were downloaded from 

gbif.org on July 8, 2021. Using the CoordinateCleaner (v2.0-18; Zizka et al. 2019) package in R 

4.0.5 (R Core Team 2020), records without numeric coordinates or coordinate uncertainty values 

were removed. To avoid including occurrence records of dubious origin, records meeting the 

following criteria were also removed: identical latitude and longitude; within 10,000 meters of 

country capitals; within 1,000 meters of country or province centroids; within 100 meters of 

zoos, botanical gardens, herbaria, universities, or museums; non-terrestrial; outside reported 

country or province; or having coordinate uncertainty greater than 1,000 meters. The remaining 

occurrences were retained as presence records. 

 

2.2 Environmental data 

 

2.2.1 Climate 

 

Global historical climate data (1970-2000) in the form of WorldClim’s 19 bioclimatic 

variables (Fick and Hijmans 2017) were downloaded from worldclim.org on July 8, 2021, at a 

resolution of 30 seconds. The variables BIO8, BIO9, BIO18, and BIO19 were excluded a priori 

from any analyses due to known spatial artifacts identified by Escobar et al. (2014). 

 

2.2.2 Landscape 

 

Data describing the biophysical landscape were obtained from the US Geological 

Survey’s National Land Cover Database (Yang et al. 2018). Two distinct data layers from this 

database were used: (1) a categorical classification of land cover, and (2) a continuous 

measurement of percent tree canopy cover. Both data layers were downloaded at a resolution of 



6 

30 meters by 30 meters. To accommodate the constraints of the chosen modeling technique, the 

layers were resampled to a coarser resolution of 30 seconds to match the climate data. The 

categorical land cover data layer was resampled according to the most frequent value within each 

grid cell, while the percent tree canopy cover data layer was resampled according to the mean 

value within each grid cell. Using the proximity algorithm in QGIS 3.16.7 (QGIS Development 

Team 2021), the minimum distance from each grid cell to each land cover class was calculated, 

resulting in a continuous measurement of distance to each of 10 land cover classes. Elevation 

data were also downloaded from worldclim.org at a resolution of 30 seconds (Fick and Hijmans 

2017). Elevation and land cover data were included to represent habitat features of potential 

importance to A. maculatum and other tick species and have been included in several similar 

analyses of environmental suitability for ticks (Soucy et al. 2018, Pascoe et al. 2019). 

 

2.3 Model development 

 

2.3.1 Spatial bias 

 

To reduce spatial autocorrelation and remove dubious presence records, occurrence 

points were first manually filtered in QGIS to remove points located at residential or commercial 

properties and on roads, highways, or parking lots. The remaining occurrence points were 

spatially rarefied using the spThin (v0.2.0; Aiello-Lammens et al. 2015) package in R – 

occurrence points within 10,000 meters of another occurrence point were removed in random 

order. A 500 km circular buffer was constructed in R around the final set of occurrence points to 

define the geographic extent to be used for model calibration and to serve as a conservative 

estimate of accessible dispersal area for A. maculatum. Finally, a bias file representing the spatial 

clustering of occurrence points was created using the Two-Dimensional Kernel Density 

Estimation (kde2d) function in the MASS (v7.3-54; Venables and Ripley 2002) package in R. 

The bias file instructs MaxEnt to select background points according to the spatial clustering of 

occurrence points, thus aligning and thereby ‘canceling out’ their spatial biases (Merow et al. 

2013). 
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2.3.2 Model evaluation 

 

To determine which combination of environmental covariates was most appropriate for 

predicting environmental suitability for A. maculatum, an initial evaluation was performed using 

the ENMeval (v2.0.1; Kass et al. 2021) package in R. This evaluation compared measures of 

model performance for 98 unique combinations of feature class and regularization multiplier 

values using all environmental covariates under consideration (15 bioclimatic variables, distance 

to 10 land cover classes, percent tree canopy cover, and elevation). From the results of this 

evaluation, the model with the lowest corrected Akaike Information Criterion (AICc) value was 

selected (Warren and Seifert 2011). The selected model – using linear, quadratic, and threshold 

feature classes and a regularization multiplier value of 3 – was subsequently run in MaxEnt 3.4.1 

(Phillips et al. 2019) to explore relationships between environmental covariates and to assess 

their relative contributions to model performance. 

Multicollinearity of the environmental covariates was assessed by calculating Pearson’s 

correlation coefficient (r) using the raster (v3.4-10; Hijmans and van Etten 2015) package in R. 

Covariates with r ≥ 0.7 were removed from consideration with respect to their permutation 

importance as calculated by MaxEnt’s jackknife analysis such that high-contributing variables 

were retained and lower-contributing, collinear variables were removed. Subsequently, any 

covariates that resulted in negative test gain in isolation or that caused an increase in average test 

gain when excluded were removed. Using the remaining environmental covariates, the same 98 

models were again evaluated using the ENMeval package in R and the model with the lowest 

AICc value was again selected. The results of the evaluation were constrained to only include 

models with average test AUC ≥ 0.7, average AUC standard deviation < 0.05, and average test 

omission rate < 0.10 (Warren and Seifert 2011, Radosavljevic and Anderson 2014). The selected 

model – using linear, quadratic, and hinge feature classes and a regularization multiplier value of 

4 – was subsequently run in MaxEnt using the crossvalidate run type with 10 replicates. Using 

the results of MaxEnt’s multivariate environmental similarity surface (MESS) analysis as a 

guide, model outputs were spatially restricted to exclude areas that were highly dissimilar with 

respect to the values of environmental covariates between the training sample and the prediction 

region (Elith et al. 2010). Areas with this degree of environmental dissimilarity have little 
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predictive value and thus should not be included in any interpretation of environmental 

suitability. 
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CHAPTER 3: RESULTS 

 

3.1 Occurrence data 

 

During field collection of ticks in Illinois, 42 out of 350 transects (16 out of 53 sites 

sampled) yielded at least one A. maculatum individual and were recorded as presences to be used 

for modeling. The literature search resulted in 35 publications containing relevant geographic 

information about A. maculatum collected from the environment. Georeferencing produced 62 

occurrence records to be used for modeling. GBIF provided a list of 625 georeferenced records 

of A. maculatum; 125 were retained to be used for modeling following the filtering methods 

described above. The combined 229 occurrence records were then spatially rarefied to reduce 

sampling bias and to remove dubious records according to the methods described above. In total, 

144 occurrence records were used in model development (Fig. 1).  

 

3.2 Model development 

 

The preliminary MaxEnt model including all environmental covariates under 

consideration (15 bioclimatic variables, distance to 10 land cover classes, percent tree canopy 

cover, and elevation) yielded a ranked list of permutation importance for each environmental 

covariate. Permutation importance provides an estimate of each covariate’s individual 

contribution to the overall predictive performance of the model by measuring the change in AUC 

when each covariate is, in turn, randomly permuted (Phillips 2017). Using the ranked list of 

permutation importance as a guide, highly collinear (r ≥ 0.7) covariates were sequentially 

removed such that highly ranked covariates were retained. Covariates resulting in negative test 

gain in isolation or an increase in average test gain when excluded were removed. In total, 6 

environmental covariates were retained (Table 1). Using the final set of 6 covariates to evaluate 

model performance as described above, the model with the lowest AICc value used linear, 

quadratic, and hinge feature classes and a regularization multiplier value of 4 and was 

subsequently run in MaxEnt using the crossvalidate run type with 10 replicates. 
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3.3 Final model results 

 

The final MaxEnt model had an average test AUC of 0.8235, average AUC standard 

deviation of 0.0436, average test gain of 0.7234, and average 10 percentile training omission rate 

of 0.0932. The covariates with the highest permutation importance were minimum temperature 

of the coldest month (32.7), mean diurnal temperature range (31.8), and precipitation seasonality 

(25.3), with percent tree canopy cover, distance to cultivated crops, and distance to grassland 

making up the remaining permutation importance (10.2; Table 1). 

Areas with suitable environmental conditions for A. maculatum were predicted 

throughout the United States, but the pattern was spatially heterogeneous. Here, environmental 

suitability is interpreted as the goodness of fit of the model predictions with respect to the 

training sample. Higher suitability was predicted in coastal regions while the arid, high-elevation 

regions of the intermountain west were largely predicted to be environmentally unsuitable (Fig. 

2a). Minimum temperature of the coldest month was positively associated with predicted 

environmental suitability for A. maculatum (Fig. 3a), while mean diurnal temperature range 

(calculated as the average difference between monthly maximum and minimum temperatures) 

was negatively associated with predicted environmental suitability (Fig. 3b). Precipitation 

seasonality above 50% was associated with an increase in predicted environmental suitability, 

while no relationship was observed below 50% (Fig. 3c). Environmental suitability was 

generally predicted to decrease with increasing percent tree canopy cover (Fig. 3d), as well as 

with increasing distance to cultivated crops (Fig. 3e) and to grassland/herbaceous land cover 

(Fig. 3f). 
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CHAPTER 4: DISCUSSION 

 

The ongoing reports of new occurrence records of the medically important Gulf Coast 

tick indicate a non-static geographic distribution in the United States and highlight the value of 

environmental niche modeling approaches for predicting the possible future distribution of this 

species. This study combined occurrence records from three distinct sources with high-resolution 

climate and land cover data to explore the environmental drivers of the current distribution of A. 

maculatum in the United States. Of the broad spectrum of environmental covariates initially 

considered, six were selected to be used in modeling environmental suitability for A. maculatum. 

Based on their permutation importance and individual contributions to model test gain, the 

climate variables included in this modeling exercise proved to be more important in explaining 

the current distribution of A. maculatum compared to the landscape factors considered. While 

habitat features are still important to understanding the current and potential future distribution 

of this species, this result highlights the instrumental role of climate in determining the 

distribution of A. maculatum in the United States. 

The important role of climate in explaining the distribution of A. maculatum is not 

surprising considering known environmental constraints of ticks. Ticks spend a significant 

portion of their lives detached from their hosts and are thus geographically constrained in large 

part by the abiotic conditions of their local environment. Important among these abiotic factors 

are temperature and relative humidity (Sonenshine and Roe 2013). Of the many environmental 

covariates considered in this study, three climate variables were retained to model environmental 

suitability for A. maculatum: (1) minimum temperature of the coldest month (Fig. 2b), (2) mean 

diurnal temperature range (Fig. 2c), and (3) precipitation seasonality (Fig. 2d). Minimum 

temperature of the coldest month showed a positive association with predicted environmental 

suitability for A. maculatum, indicating that warmer temperature minima contributed to greater 

environmental suitability. High predicted suitability (> 0.8) was associated with minimum 

temperatures above 5°C (Fig. 3a). Conversely, mean diurnal temperature range showed a 

negative association with predicted environmental suitability for A. maculatum, indicating that 

predicted environmental suitability decreased with increasingly broad daytime temperature 

ranges (Fig. 3b). Here, mean diurnal temperature range is calculated as the average difference 

between monthly maximum and minimum temperatures. Finally, precipitation seasonality 
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showed a positive association with predicted environmental suitability for A. maculatum (> 50%; 

Fig. 3c) indicating that greater variation in precipitation throughout the year, beyond a threshold 

of approximately 50% seasonality, contributed to greater environmental suitability. 

In addition to the three climate variables used to model environmental suitability for A. 

maculatum, three variables describing the biophysical landscape were retained: (1) percent tree 

canopy cover, (2) distance to cultivated crops, and (3) distance to grassland/herbaceous land 

cover. Percent tree canopy cover was negatively associated with predicted environmental 

suitability for A. maculatum, suggesting a preference for open habitat with relatively little 

canopy closure. Environmental suitability was maximized (~0.7) at approximately 15% canopy 

cover and gradually declined as percent canopy cover increased (Fig. 3d). Distance to cultivated 

crops (Fig. 3e) and distance to grassland/herbaceous land cover (Fig. 3f) also showed a negative 

association with predicted habitat suitability for A. maculatum. Suitability was maximized (~0.7) 

within 1 km and declined steadily with increasing distance, suggesting that areas near cultivated 

crops and grasslands were most favorable. These variables are likely linked in that agricultural 

fields and grassland ecosystems tend to have a low degree of canopy cover. Despite their 

relatively low contribution to model predictive performance compared to the climate variables, 

the three landscape variables provide valuable insight into the habitat associations of A. 

maculatum. Here, open habitat with minimal tree canopy cover was shown to be favorable, 

which is supported by observations of A. maculatum from field surveys (Scifres et al. 1988, Teel 

et al. 2010, Nadolny and Gaff 2018). 

Based on the results of the model built with the six environmental covariates described 

above, predicted environmental suitability for A. maculatum was spatially heterogeneous (Fig. 

2a). Coastal regions were predicted to be highly environmentally suitable, while the inter-

mountain region further inland was predicted to be very unsuitable. High environmental 

suitability was predicted for many areas outside the current distribution of A. maculatum in the 

United States, suggesting that range expansion for this species could continue provided that 

biotic conditions are favorable (e.g., effective dispersal, suitable host communities). In the 

eastern United States, highly suitable areas appeared to be restricted to the coast at higher 

latitudes. For example, parts of coastal New England (Maine, Massachusetts, Rhode Island, and 

Connecticut) were predicted to have high environmental suitability, while further inland areas 

were predicted to be unsuitable. The same pattern can be observed in Wisconsin, with coastal 
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suitability along Lake Michigan predicted to be much higher than areas further inland. This 

pattern may be due, in part, to the temperature-buffering effects of large bodies of water on 

adjacent coastal lands. In these regions, temperature minima tended to be higher (Fig. 2b) and 

average temperature range tended to be lower (Fig. 2c). Large swaths of western Washington, 

Oregon, and California were predicted to be highly environmentally suitable for A. maculatum. 

While the western United States is geographically disconnected from A. maculatum’s core 

distribution in the eastern United States, the recent detection of numerous high-density 

populations in Arizona, New Mexico, and western Texas suggests that dispersal to other parts of 

the western United States is possible (Hecht et al. 2020, Paddock et al. 2020). 

The taxonomic relationships between A. maculatum and closely related taxa have been 

contested since their initial description by Koch in 1844 (Koch 1844, 1847, Kohls 1956). In 

North America, the taxonomic relationship between A. maculatum and A. triste is especially 

contentious, and misidentifications are common owing to subtle and often unreliable 

morphological distinctions (Estrada-Peña et al. 2005). Amblyomma triste has been reported in the 

United States (Mertins et al. 2010), however, the most recent molecular phylogenetic analysis 

supports the conspecificity of A. triste and A. maculatum (Lado et al. 2018). Following the 

detection of A. maculatum populations in Arizona, morphological ambiguities among the 

collected specimens called their taxonomic identity into question (Allerdice et al. 2017, Hecht et 

al. 2020). Recent work has indicated some degree of reproductive incompatibility between A. 

maculatum specimens collected in Arizona and those collected in the eastern United States, 

indicating that some individuals collected from southwestern populations may constitute a 

distinct species, but further investigation is required to confirm their taxonomic status (Allerdice 

et al. 2020). A recent analysis by Cuervo et al. showed that the southwestern morphotype 

exhibits significant niche divergence from A. maculatum populations in the eastern United 

States, suggesting local adaptation to novel environmental conditions (Cuervo et al. 2021). 

Alkishe et al. (2021) used a similar approach to model environmental suitability for A. 

maculatum in the United States as part of a broader study of tick distributional shifts under future 

climate change scenarios. Occurrence records were compiled from a variety of sources including 

GBIF, VectorMap, BISON, and published literature. Climate variables using average data from 

WorldClim were used to model current climate conditions and multiple general circulation 

models (GCMs) were used to model future climate conditions. The results of their analysis 
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indicated that much of the southeastern United States was predicted to be environmentally 

suitable for A. maculatum under current climate conditions. Under future climate conditions, 

suitable area was predicted to extend northward to include much of the midwestern and north 

Atlantic regions. Even under future climate conditions, predicted suitability waned in the higher 

latitudes of New England with suitable areas confined to the coast. Areas of environmental 

suitability under current climate conditions were also predicted in the western Unites States 

throughout Washington, Oregon, and California. Sections of southeastern Arizona were also 

predicted to be environmentally suitable, corresponding to the recently discovered populations 

mentioned above. In general, the results from Alkishe et al. align with those of the study 

presented here. In the eastern United States, my results predicted areas of environmental 

suitability occurring further north than predicted by Alkishe et al. based on current climate 

conditions. This is likely due, in part, to my inclusion of a large number of occurrence records 

from southern Illinois which had not yet been collected at the time of Alkishe et al.’s analysis. 

These occurrence records corresponded to climate conditions that were underrepresented in the 

rest of the occurrence set and thus likely contributed to a northward shift in predicted 

environmental suitability under current climate conditions. Additionally, my results predicted a 

larger area of environmental suitability in the southwestern United States compared to Alkishe et 

al. This could similarly be due to my inclusion of a large number of occurrence records from 

recently published literature describing A. maculatum populations in Arizona, New Mexico, and 

Texas (Hecht et al. 2020, Paddock et al. 2020) that may not have been available to Alkishe et al. 

at the time of their analysis. 

Pascoe et al. (2019) modeled potential habitat for A. maculatum and other Amblyomma 

spp. ticks in California using a combination of climate and landscape variables. Occurrence data 

were sourced from relevant literature and online databases including GBIF, VectorMap, and 

BISON. Climate data consisted of WorldClim’s 19 bioclimatic variables, and landscape 

variables included elevation, slope, and average and standard deviation of normalized difference 

vegetation indices (NDVI). In their final model of environmental suitability for A. maculatum, 

Pascoe et al. included the following four environmental covariates: (1) minimum temperature of 

the coldest month, (2) precipitation of the wettest month, (3) elevation, and (4) NDVI average. 

Minimum temperature of the coldest month was associated with an increase in environmental 

suitability (peaking at ~0.75) from -10 to 7 °C, followed by a subsequent decrease in suitability 
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above 7°C. Average NDVI (which is likely linked to percent tree canopy cover) was associated 

with a general decrease in environmental suitability for A. maculatum. Based on the results of 

their analysis, much of western California was predicted to be environmentally suitable for A. 

maculatum, which is largely in agreement with my findings. Significant portions of coastal 

California were excluded from my model predictions due to a high degree of environmental 

dissimilarity compared to the training sample as revealed by the results of MaxEnt’s MESS 

analysis. It is likely that Pascoe et al. did not observe this degree of dissimilarity as a result of 

using a different set of environmental covariates in their final model. 

A major limitation of this approach to modeling tick distributions is the lack of 

information regarding biotic interactions, most notably, interactions with host communities. 

While understanding the range of abiotic conditions tolerated by a species is certainly 

informative, host availability can significantly impact population density and dispersal 

capabilities of ticks. Furthermore, as many tick-borne pathogens are host-acquired, information 

on host communities is essential for linking ecology and epidemiology. Another limitation of this 

approach is related to the way in which occurrence data are often collected. In this study and 

many others, the observation of a single tick, either from the environment or collected from a 

host, is interpreted as a presence record despite the possibility that it is not representative of a 

reproducing population. In this way, an observation of an adventive tick from far outside its 

established range is treated the same as a tick collected from within a reproducing population. 

For some more widely researched species, it may well be possible to model environmental 

suitability using only occurrence records collected from reproducing populations. Such an 

approach was not employed here due to the resultant reduction in sample size and increase in 

sampling bias. Nonetheless, every effort was made to ensure that the majority of occurrence 

records used in the present study were representative of potentially reproducing populations and 

that sampling bias was reduced to the greatest extent possible. 

Based on the results of this and other recent studies of environmental suitability for A. 

maculatum, some broad inferences can be made regarding the status of A. maculatum in the 

United States. In the eastern United States, A. maculatum is predicted to occur at higher latitudes 

than formerly noted. Recent field collections of A. maculatum from this region in this study and 

others (Florin et al. 2013, 2014, Phillips et al. 2020) lend support to this prediction. Large swaths 

of the western United States are also predicted to be environmentally suitable for A. maculatum, 
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namely in Washington, Oregon, California, and Arizona. These predictions are largely based on 

recent reports of established populations in Arizona, New Mexico, and western Texas (Hecht et 

al. 2020, Paddock et al. 2020). Regardless of their current taxonomic ambiguity, rates of R. 

parkeri infection among ticks from these populations create concern regarding consequences for 

human health resulting from range expansion throughout potentially suitable areas of the western 

United States (Allerdice et al. 2017). Further studies of A. maculatum in North America should 

seek to incorporate information on host identity and availability throughout the species’ potential 

range. Some work has been done to date investigating A. maculatum host associations in a 

variety of settings (Semtner and Hair 1973, Moraru et al. 2012, Nadolny and Gaff 2018, Cumbie 

et al. 2020), but such information has yet to be considered in estimates of current and potential 

future distribution. As tick species distributions continue to change, effective surveillance 

remains an essential component in preventing and preparing for increases in tick-borne disease 

incidence at local scales. With increasing awareness of A. maculatum as a species of 

considerable significance to public health, the habitat associations and distributional predictions 

provided in this study can help guide continued surveillance of this species in the United States.  
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TABLE AND FIGURES 

 

Table 1. Environmental covariates used in final model iteration listed in order of average 

permutation importance across 10 replicate models as calculated by MaxEnt’s jackknife analysis. 

Environmental Covariate Average Permutation 

Importance 

Minimum temperature of coldest month 32.7226 

 

Mean diurnal temperature range (mean of monthly 

(maximum temperature – minimum temperature)) 

31.7504 

 

Precipitation seasonality (coefficient of variation) 25.2627 

 

Percent tree canopy cover 5.9673 

 

Distance to cultivated crops 3.9097 

 

Distance to grassland/herbaceous land cover 1.0709 
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Figure 1. Amblyomma maculatum occurrence records (post-filtering) in the continental United 

States taken from field collections, published scientific literature, and GBIF. Occurrence records 

were manually filtered to remove dubious records and were spatially rarified to a minimum 

distance of 10,000 meters to reduce sampling bias. The shaded region was constructed by 

applying a 500-kilometer circular buffer around occurrence points and represents the spatial 

extent used for model training. 
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Figure 2a. Predicted environmental suitability for A. maculatum based on the median output of 

the final model iteration produced in MaxEnt. Red shades indicate higher predicted 

environmental suitability, while lighter orange shades indicate lower predicted environmental 

suitability. White areas indicate still lower predicted environmental suitability, below a threshold 

of 0.17. Grayed-out areas exhibited highly dissimilar environmental conditions compared to the 

training sample according to MaxEnt’s MESS analysis and should be interpreted as having 

unknown environmental suitability for A. maculatum. 
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Figure 2b. Minimum temperature of the coldest month in the United States based on global 

historical climate data (1970-2000) from WorldClim. Warm colors correspond to higher 

temperature minima, while cold colors correspond to lower temperature minima. 
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Figure 2c. Mean diurnal temperature range in the United States based on global historical 

climate data (1970-2000) from WorldClim. Mean diurnal temperature range is calculated as the 

average difference between monthly maximum and minimum temperatures. Warm colors 

correspond to areas with a larger average temperature range, while cold colors correspond to 

areas with a smaller average temperature range.  
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Figure 2d. Precipitation seasonality in the United States based on global historical climate data 

(1970-2000) from WorldClim. Warm colors correspond to areas with highly seasonal 

precipitation, indicating greater variation in precipitation throughout the year. Cold colors 

correspond to areas with lower precipitation seasonality, indicating less variation in precipitation 

throughout the year.  
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Figure 3. Response curves showing the relationship between predicted environmental suitability 

for A. maculatum and the six environmental covariates used in the final model iteration when all 

other variables were held constant. (A) Minimum temperature of the coldest month, (B) mean 

diurnal temperature range (mean of monthly (maximum temperature – minimum temperature)), 

(C) precipitation seasonality (coefficient of variation), (D) percent tree canopy cover, (E) 

distance to cultivated crops, and (F) distance to grassland/herbaceous land cover. 
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