354 research outputs found

    Washington\u27s One-Size-Fits-All Unemployment Compensation Eligibility in Cases of Voluntary Separation

    Get PDF
    Washington State’s Employment Security Act allows individuals who voluntarily left their jobs to be eligible for unemployment benefits if they quit their position with “good cause.” In structuring this Act, the state’s legislature has confined the definition of good cause to a one-size-fits-all list consisting of eleven circumstances. Consequently, if a situation arises that forces an individual to quit their job, yet does not fall into one of those eleven outlined circumstances, the Employment Security Department will disqualify the individual from receiving unemployment benefits. In comparison with other states’ unemployment laws, Washington’s system is quite limited, allowing no discretion under even the most compelling of circumstances. Such a statutory structure does not allow the state to truly effectuate the Act’s purpose of both providing benefits to those “unemployed through no fault of their own” and “reducing involuntary unemployment and the suffering caused thereby to the minimum.”1 Therefore, Washington’s legislature must act to alleviate this harm and grant individuals the unemployment benefits they deserve. In developing a solution, this Comment compares the good cause unemployment laws of Oregon, North Dakota, and Pennsylvania. Through this analysis, this Comment proposes that Washington repeal its exclusive good cause list and adopt a standard that defines “good cause” as cause of such a necessitous and compelling nature that would force a reasonable and prudent person of normal sensitivity, exercising ordinary common sense, to leave their employment

    Away from the End of Motherhood: Sites of Haunting in the Social Imaginary in Lemonade and The Handmaid\u27s Tale

    Get PDF
    This thesis analyzes the television series adaptation of The Handmaid\u27s Tale, specifically the episode A Woman\u27s Place, and Beyoncé\u27s Lemonade: A Visual Album. I argue that these cultural texts leverage representations of women\u27s lived experiences to scrutinize contemporary American anxieties about motherhood and reproductive justice. Lemonade, a celebration of Black womanhood, presents a counterpoint to The Handmaid\u27s Tale\u27s preoccupation with white motherhood in way that speculates on the utopian potentials of a woman-centered society. Using bell hooks\u27 film analysis, Avery Gordon\u27s haunting, and Luce Irigaray\u27s mimicry, I examine two interconnected themes: feminist aesthetics and generational haunting. While The Handmaid\u27s Tale evokes the fear of possible descent into a dystopic society, Lemonade reaches for a feminist futurity. Each text re-inscribes a worldview that tracks a contradiction or reaffirmation of expectations of who is allowed to be a mother in contemporary society within the social imagination of reproductive justice inseparable from our current moment in American culture

    Models and measurements of energy-dependent quenching.

    Get PDF
    Energy-dependent quenching (qE) in photosystem II (PSII) is a pH-dependent response that enables plants to regulate light harvesting in response to rapid fluctuations in light intensity. In this review, we aim to provide a physical picture for understanding the interplay between the triggering of qE by a pH gradient across the thylakoid membrane and subsequent changes in PSII. We discuss how these changes alter the energy transfer network of chlorophyll in the grana membrane and allow it to switch between an unquenched and quenched state. Within this conceptual framework, we describe the biochemical and spectroscopic measurements and models that have been used to understand the mechanism of qE in plants with a focus on measurements of samples that perform qE in response to light. In addition, we address the outstanding questions and challenges in the field. One of the current challenges in gaining a full understanding of qE is the difficulty in simultaneously measuring both the photophysical mechanism of quenching and the physiological state of the thylakoid membrane. We suggest that new experimental and modeling efforts that can monitor the many processes that occur on multiple timescales and length scales will be important for elucidating the quantitative details of the mechanism of qE

    A Universal, Genomewide GuideFinder for CRISPR/Cas9 Targeting in Microbial Genomes.

    Get PDF
    The CRISPR/Cas system has significant potential to facilitate gene editing in a variety of bacterial species. CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) represent modifications of the CRISPR/Cas9 system utilizing a catalytically inactive Cas9 protein for transcription repression and activation, respectively. While CRISPRi and CRISPRa have tremendous potential to systematically investigate gene function in bacteria, few programs are specifically tailored to identify guides in draft bacterial genomes genomewide. Furthermore, few programs offer open-source code with flexible design parameters for bacterial targeting. To address these limitations, we created GuideFinder, a customizable, user-friendly program that can design guides for any annotated bacterial genome. GuideFinder designs guides from NGG protospacer-adjacent motif (PAM) sites for any number of genes by the use of an annotated genome and FASTA file input by the user. Guides are filtered according to user-defined design parameters and removed if they contain any off-target matches. Iteration with lowered parameter thresholds allows the program to design guides for genes that did not produce guides with the more stringent parameters, one of several features unique to GuideFinder. GuideFinder can also identify paired guides for targeting multiplicity, whose validity we tested experimentally. GuideFinder has been tested on a variety of diverse bacterial genomes, finding guides for 95% of genes on average. Moreover, guides designed by the program are functionally useful-focusing on CRISPRi as a potential application-as demonstrated by essential gene knockdown in two staphylococcal species. Through the large-scale generation of guides, this open-access software will improve accessibility to CRISPR/Cas studies of a variety of bacterial species

    Mouse hepatitis virus neurovirulence: evidence of a linkage between S glycoprotein expression and immunopathology.

    Get PDF
    Differences in disease outcome between the highly neurovirulent MHV-JHM and mildly neurovirulent MHV-A59 have been attributed to variations within the spike (S) glycoprotein. Previously, we found that MHV-JHM neurovirulence was marked by diminished expression of interferon-gamma (IFN-gamma) mRNA and a reduced presence of CD8 T cells in the CNS concomitant with heightened macrophage inflammatory protein (MIP)-1 transcript levels and greater macrophage infiltration relative to MHV-A59 infection. Here, the ability of the S and non-spike genes to regulate these immune responses was evaluated using chimeric viruses. Chimeric viruses WTR13 and S4R22 were made on MHV-A59 variant backgrounds and, respectively, contained the S gene of MHV-A59 and MHV-JHM. Unexpectedly, genes other than S appeared to modulate events critical to viral replication and survival. Unlike unresolving MHV-JHM infections, the clearance of WTR13 and S4R22 infections coincided with strong IFN-gamma transcription and an increase in the number of CD8 T cells infiltrating into the CNS. However, despite the absence of detectable viral titers, approximately 40% of S4R22-infected mice succumbed within 3 weeks, indicating that the enhanced mortality following S4R22 infection was not associated with high viral titers. Instead, similar to the MHV-JHM infection, reduced survival following S4R22 infection was observed in the presence of elevated MIP-1alpha and MIP-1beta mRNA accumulation and enhanced macrophage numbers within infected brains. These observations suggest that the S protein of MHV-JHM influences neurovirulence through the induction of MIP-1alpha- and MIP-1beta-driven macrophage immunopathology

    Large-Scale CRISPRi and Transcriptomics of Staphylococcus epidermidis Identify Genetic Factors Implicated in Lifestyle Versatility.

    Get PDF
    Staphylococcus epidermidis is a ubiquitous human commensal skin bacterium that is also one of the most prevalent nosocomial pathogens. The genetic factors underlying this remarkable lifestyle plasticity are incompletely understood, mainly due to the difficulties of genetic manipulation, precluding high-throughput functional profiling of this species. To probe the versatility of S. epidermidis to survive across a diversity of environmental conditions, we developed a large-scale CRISPR interference (CRISPRi) screen complemented by transcriptional profiling (RNA sequencing) across 24 diverse conditions and piloted a droplet-based CRISPRi approach to enhance throughput and sensitivity. We identified putative essential genes, importantly revealing amino acid metabolism as crucial to survival across diverse environments, and demonstrated the importance of trace metal uptake for survival under multiple stress conditions. We identified pathways significantly enriched and repressed across our range of stress and nutrient-limited conditions, demonstrating the considerable plasticity of S. epidermidis in responding to environmental stressors. Additionally, we postulate a mechanism by which nitrogen metabolism is linked to lifestyle versatility in response to hyperosmotic challenges, such as those encountered on human skin. Finally, we examined the survival of S. epidermidis under acid stress and hypothesize a role for cell wall modification as a vital component of the survival response under acidic conditions. Taken together, this study integrates large-scale CRISPRi and transcriptomics data across multiple environments to provide insights into a keystone member of the human skin microbiome. Our results additionally provide a valuable benchmarking analysis for CRISPRi screens and are a rich resource for other staphylococcal researchers

    Engineering a detect and destroy skin probiotic to combat methicillin-resistant Staphylococcus aureus.

    Get PDF
    The prevalence and virulence of pathogens such as methicillin-resistant Staphylococcus (S.) aureus (MRSA), which can cause recurrent skin infections, are of significant clinical concern. Prolonged antibiotic exposure to treat or decolonize S. aureus contributes to development of antibiotic resistance, as well as depletion of the microbiome, and its numerous beneficial functions. We hypothesized an engineered skin probiotic with the ability to selectively deliver antimicrobials only in the presence of the target organism could provide local bioremediation of pathogen colonization. We constructed a biosensing S. epidermidis capable of detecting the presence of S. aureus quorum sensing autoinducer peptide and producing lysostaphin in response. Here, we demonstrate in vitro activity of this biosensor and present and discuss challenges to deployment of this and other engineered topical skin probiotics

    Experimental Investigations of Flexible Wall Effects in Helmholtz Resonators for Aircraft Engine Acoustic Liners

    Get PDF
    Acoustic liners working like Helmholtz resonators offer an effective way to dampen tonal noise in aircraft engines. In order to broaden the bandwidth of a Helmholtz resonator, we added flexible walls that result in an additional low frequency dissipation. We investigated different parameters of the concept with a modular setup. In this paper, the results of measurements for a resonator with a flexible wall - representing the basic element of an advanced liner concept - and its potential to dampen lower frequencies are shown. The measurements are conducted at an aero-acoustic wind tunnel for multiple combinations of up to two resonators and up to four flexible walls with different parameters such as material, thickness, distance, position, orientation and shape. In this paper we show which parameter has an influence on the dissipation caused by the flexible wall. An additional dissipation occurs at specific material parameter whereas the geometric parameters alter the frequency of the additional dissipation

    Molecular composition and photochemical lifetimes of brown carbon chromophores in biomass burning organic aerosol

    Get PDF
    To better understand the effects of wildfires on air quality and climate, it is important to assess the occurrence of chromophoric compounds in smoke and characterize their optical properties. This study explores the molecular composition of light-absorbing organic aerosol, or brown carbon (BrC), sampled at the Missoula Fire Sciences laboratory as a part of the FIREX Fall 2016 lab intensive. A total of 12 biomass fuels from different plant types were tested, including gymnosperm (coniferous) and angiosperm (flowering) plants and different ecosystem components such as duff, litter, and canopy. Emitted biomass burning organic aerosol (BBOA) particles were collected onto Teflon filters and analyzed offline using high-performance liquid chromatography coupled to a photodiode array spectrophotometer and a high-resolution mass spectrometer (HPLC-PDA-HRMS). Separated BrC chromophores were classified by their retention times, absorption spectra, integrated absorbance in the near-UV and visible spectral range (300-700 nm), and chemical formulas from the accurate m/z measurements. BrC chromophores were grouped into the following classes and subclasses: lignin-derived products, which include lignin pyrolysis products; distillation products, which include coumarins and flavonoids; nitroaromatics; and polycyclic aromatic hydrocarbons (PAHs). The observed classes and subclasses were common across most fuel types, although specific BrC chromophores varied based on plant type (gymnosperm or angiosperm) and ecosystem component(s) burned. To study the stability of the observed BrC compounds with respect to photodegradation, BBOA particle samples were irradiated directly on filters with near UV (300-400 nm) radiation, followed by extraction and HPLC-PDA-HRMS analysis. Lifetimes of individual BrC chromophores depended on the fuel type and the corresponding combustion condition. Lignin-derived and flavonoid classes of BrC generally had the longest lifetimes with respect to UV photodegradation. Moreover, lifetimes for the same type of BrC chromophores varied depending on biomass fuel and combustion conditions. While individual BrC chromophores disappeared on a timescale of several days, the overall light absorption by the sample persisted longer, presumably because the condensed-phase photochemical processes converted one set of chromophores into another without complete photobleaching or from undetected BrC chromophores that photobleached more slowly. To model the effect of BrC on climate, it is important to understand the change in the overall absorption coefficient with time. We measured the equivalent atmospheric lifetimes of the overall BrC absorption coefficient, which ranged from 10 to 41 d, with subalpine fir having the shortest lifetime and conifer canopies, i.e., juniper, having the longest lifetime. BrC emitted from biomass fuel loads encompassing multiple ecosystem components (litter, shrub, canopy) had absorption lifetimes on the lower end of the range. These results indicate that photobleaching of BBOA by condensed-phase photochemistry is relatively slow. Competing chemical aging mechanisms, such as heterogeneous oxidation by OH, may be more important for controlling the rate of BrC photobleaching in BBOA

    Economic considerations for moving beyond the Kato-Katz technique for diagnosing intestinal parasites as we move towards elimination

    Get PDF
    While the need for more sensitive diagnostics for intestinal helminths is well known, the cost of developing and implementing new tests is considered relatively high compared to the Kato-Katz technique. Here, we review the reported costs of performing the Kato-Katz technique. We also outline several economic arguments we believe highlight the need for further investment in alternative diagnostics, and considerations that should be made when comparing their costs. In our opinion, we highlight that, without new diagnostic methods, it will be difficult for policy makers to make the most cost-effective decisions and that the potentially higher unit costs of new methods can be outweighed by the long-term programmatic benefits they have (such as the ability to detect the interruption of transmission)
    • …
    corecore