51 research outputs found

    Dynamics of the Interaction Between Ceria and Platinum During Redox Processes

    Get PDF
    The work is focused on understanding the dynamics of the processes which occur at the interface between ceria and platinum during redox processes, by investigating an inverse catalytic model system made of ceria epitaxial islands and ultrathin films supported on Pt(111). The evolution of the morphology, structure and electronic properties is analyzed in real-time during reduction and oxidation, using low-energy electron microscopy and spatially resolved low-energy electron diffraction. The reduction is induced using different methods, namely thermal treatments in ultra-high vacuum and in H2 as well as deposition of Ce on the oxide surface, while re-oxidation is obtained by exposure to oxygen at elevated temperature. The use of two different epitaxial systems, continuous films and nanostructures, allows determining the influence of platinum proximity on the stabilization of the specific phases observed. The factors that limit the reversibility of the observed modifications with the different oxidation treatments are also discussed. The obtained results highlight important aspects of the cerium oxide/Pt interaction that are relevant for a complete understanding of the behavior of Pt/CeO2 catalysts

    Top-Down Approach to Study Chemical and Electronic Properties of Perovskite Solar Cells: Sputtered Depth Profiling Versus Tapered Cross-Sectional Photoelectron Spectroscopies

    Get PDF
    A study of the chemical and electronic properties of various layers across perovskite solar cell (PSC) stacks is challenging. Depth-profiling photoemission spectroscopy can be used to study the surface, interface, and bulk properties of different layers in PSCs, which influence the overall performance of these devices. Herein, sputter depth profiling (SDP) and tapered cross-sectional (TCS) photoelectron spectroscopies (PESs) are used to study highly efficient mixed halide PSCs. It is found that the most used SDP-PES technique degrades the organic and deforms the inorganic materials during sputtering of the PSCs while the TCS-PES method is less destructive and can determine the chemical and electronic properties of all layers precisely. The SDP-PES dissociates the chemical bonding in the spiro-MeOTAD and perovskite layer and reduces the TiO2_{2}, which causes the chemical analysis to be unreliable. The TCS-PES revealed a band bending only at the spiro-MeOTAD/perovskite interface of about 0.7 eV. Both the TCS and SDP-PES show that the perovskite layer is inhomogeneous and has a higher amount of bromine at the perovskite/TiO2_{2} interface

    Growth and characterization of ZnO thin films at low temperatures: from room temperature to − 120 °C

    Full text link
    ZnO thin films have been grown by e-beam evaporation in the range from room temperature to − 120 °C on two types of substrates, Al2O3 (0001) and Si (100). Although the ZnO/Al2O3 system has been thoroughly characterized, including optical and electrical techniques, the morphological, structural and chemical properties show no significant differences between both substrates. Thus, the general features of the ZnO growth mode at low temperature can be generalized. The relatively low growth temperatures reduce the diffusion of atoms at the surface, which leads to morphological and chemical changes. As the temperature decreases, the growth mode changes from a van der Drift model to a gradual bilayer system composed of an interfacial layer in contact with the substrate and a second columnar-based layer. This second well-ordered film disappears for the lowest temperatures while a Zn-rich interface in contact with the substrate emerges. Precisely from this interface, Zn-rich whiskers develop under the ZnO film and cause the loss of adhesion at temperatures below − 100 °C. These extreme temperatures also affect the crystal size, lattice strain, and total amount of oxygen vacancies. The behavior of the optical and electrical properties in terms of band gap, transparency, electrical resistivity, and Seebeck coefficient is discussed in the light of structural and chemical characterization. Samples grown at 0 °C exhibit an enhanced transmittance compared to those grown at room temperature while preserving similar electrical resistivity values and natural n-type doping. These results open a promising route to enhance ZnO films properties below the typical high temperature windowThis investigation has been funded by the Ministerio de Ciencia, Innovación y Universidades of Spain through the FIS2015-67367-C2- 1-P project and by the Comunidad de Madrid through the NANOMAGCOST-CM P2018/NMT4321 project. One of the authors (C.M.) thanks Ministerio de Educación, Cultura y Deportes for FPU014/02020 gran

    Are Ni/ and Ni5Fe1/biochar catalysts suitable for synthetic natural gas production? A comparison with γ-Al2O3 supported catalysts

    Get PDF
    Among challenges implicit in the transition to the post–fossil fuel energetic model, the finite amount of resources available for the technological implementation of CO2 revalorizing processes arises as a central issue. The development of fully renewable catalytic systems with easier metal recovery strategies would promote the viability and sustainability of synthetic natural gas production circular routes. Taking Ni and NiFe catalysts supported over γ-Al2O3 oxide as reference materials, this work evaluates the potentiality of Ni and NiFe supported biochar catalysts for CO2 methanation. The development of competitive biochar catalysts was found dependent on the creation of basic sites on the catalyst surface. Displaying lower Turn Over Frequencies than Ni/Al catalyst, the absence of basic sites achieved over Ni/C catalyst was related to the depleted catalyst performances. For NiFe catalysts, analogous Ni5Fe1 alloys were constituted over both alumina and biochar supports. The highest specific activity of the catalyst series, exhibited by the NiFe/C catalyst, was related to the development of surface basic sites along with weaker NiFe–C interactions, which resulted in increased Ni0:NiO surface populations under reaction conditions. In summary, the present work establishes biochar supports as a competitive material to consider within the future low-carbon energetic panorama.Sasol Foundation gamma-Al2O

    Self-organized 2D nanopatterns after low-coverage Ga adsorption on Si (1 1 1)

    Get PDF
    The evolution of the Si(1 1 1) surface after submonolayer deposition of Ga has been observedin situby low-energy electron microscopy and scanning tunnelling microscopy. A phase separation of Ga-terminated-R 30° reconstructed areas and bare Si(1 1 1)-7 × 7 regions leads to the formation of a two-dimensional nanopattern. The shape of this pattern can be controlled by the choice of the surface miscut direction, which is explained in terms of the anisotropy of the domain boundary line energy and a high kink-formation energy. A general scheme for the nanopattern formation, based on intrinsic properties of the Si(1 1 1) surface, is presented. Experiments performed with In instead of Ga support this scheme

    Imaging the Kirkendall effect in pyrite (FeS2) thin films: cross-sectional microstructure and chemical features

    Full text link
    This investigation provides novel data on the structure and chemical composition of pyrite thin films and new hints concerning their formation mechanism. From TEM-HAADF data, it has been found that the films are composed of two different layers: one is very compact and the other one is quite porous with many voids separating a few groups of grains. This porous layer is always in direct contact with the substrate, and its thickness is quite similar to that of the original Fe film. The average size of pyrite grains is equal in both layers, what suggests that the same process is responsible for their formation. Concentration profiles of sulfur, iron and some impurities (mainly sodium and oxygen from the glass substrate) through both layers are given in this work, and thus chemical inhomogeneities of the films are proved by the obtained stoichiometric ratios (S/Fe). Moreover, Na from sodalime glass substrates mainly accumulates at the pyrite grain boundaries and barely dopes them. The obtained results support the hypothesis that the iron sulfuration process essentially induces the diffusion of iron atoms, what leads to the porous layer formation as a manifestation of the Kirkendall Effect. Therefore, it seems that the same mechanisms that operate in the synthesis of surface hollow structures at the nanoscale are also active in the formation of pyrite thin films ranging from several tens to hundreds of nanometersMembers of MIRE Group acknowledge the financial support of the Spanish MICINN under project RTI2018-099794-B-I00. E. Flores acknowledges the intramural CSIC project 2D-MeSes funding and the service from the MiNa Laboratory at IMN, and funding from CM (project SpaceTec, S2013/ICE2822), MINECO (project CSIC13-4E1794) and EU (FEDER,FSE). Financial support through the project UMA18-FEDERJA-041 is gratefully acknowledge

    adsorbate induced self ordering of germanium nanoislands on si 113

    Get PDF
    The impact of Ga preadsorption on the spatial correlation of nanoscale three-dimensional (3D) Ge-islands has been investigated by low-energy electron microscopy and low-energy electron diffraction. Submonolayer Ga adsorption leads to the formation of a 2D chemical nanopattern, since the Ga-terminated (2×2) domains exclusively decorate the step edges of the Si(113) substrate. Subsequent Ge growth on such a partially Ga-covered surface results in Ge 3D islands with an increased density as compared to Ge growth on clean Si(113). However, no pronounced alignment of the Ge islands is observed. Completely different results are obtained for Ga saturation coverage, which results in the formation of (112) and (115) facets regularly arranged with a periodicity of about 40 nm. Upon Ge deposition, Ge islands are formed at a high density of about 1.3×1010 cm−2. These islands are well ordered as they align at the substrate facets. Moreover, the facet array induces a reversal of the Ge islands' shape anisotropy as compared to growth on planar Si(113) substrates
    • …
    corecore