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Abstract. The evolution of the Si(1 1 1) surface after submonolayer deposition
of Ga has been observed in situ by low-energy electron microscopy and scanning
tunnelling microscopy. A phase separation of Ga-terminated

√
3 × √

3-R 30◦

reconstructed areas and bare Si(1 1 1)-7 × 7 regions leads to the formation of
a two-dimensional nanopattern. The shape of this pattern can be controlled by
the choice of the surface miscut direction, which is explained in terms of the
anisotropy of the domain boundary line energy and a high kink-formation energy.
A general scheme for the nanopattern formation, based on intrinsic properties
of the Si(1 1 1) surface, is presented. Experiments performed with In instead of
Ga support this scheme.
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1. Introduction

The nanoscale patterning of semiconductor surfaces has become an important issue in surface
science and technology. Changes of the surface properties after adsorbate-induced nanopattern
formation can enable selective growth of nanometre scale structures such as nanowires or
nanodots. Different routes have been taken towards surface patterning: single-atom manipulation
[1, 2], electron or ion beam lithography [3, 4] and self-assembly [5, 6] of surface patterns. The
latter is especially promising with respect to technological applications, because it opens the
gate towards the massively parallel fabrication of device structures.

The Ga/Si(1 1 1) system is of special interest, because it has already been demonstrated that
nanoscale pattern formation can be achieved and, moreover, subsequent selective growth and
alignment of three-dimensional (3D) germanium nanoislands is possible [7]. For this specific
adsorbate system, it has been reported that the miscut direction can affect the shape of the
Ga : Si(1 1 1)-

√
3 × √

3-R 30◦ domains [8] after room temperature saturation and (partial)
thermal redesorption of gallium. In the following, we will not only show how the nanopattern
shape can be controlled during Ga deposition, but we will also elucidate the mechanism
responsible for this type of nanopattern formation.

2. Experimental

The experiments were carried out in two different ultra-high vacuum systems. One system is
equipped with a variable-temperature scanning tunnelling microscope (Omicron VT-STM).
The other system is the spectroscopic photoemission and low-energy electron microscope
(SPELEEM) at the undulator beamline 1.2 at ELETTRA [9, 10]. After degassing the Si(1 1 1)
substrates for at least 12 h at 600 ◦C, a clean 7 × 7 surface reconstruction was prepared by 2
or 3 short flashes to 1200 ◦C for up to 30 s. Ga was evaporated from an effusion cell heated by
electron bombardment. For the STM experiments, Ga was deposited at room temperature, and the
sample temperature was then increased during the STM measurements. For the LEEM studies,
highly oriented Si wafer pieces with an absolute miscut angle of about 0.02◦ were used. Ga was
deposited during imaging in the LEEM, at a sample temperature close to the Ga redesorption
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threshold (≈650 ◦C), i.e. very close to thermodynamic equilibrium conditions. The values of the
absolute Ga coverages given in the following have been determined from the area fractions of
the Ga-

√
3 × √

3-R 30◦ structure appearing in the LEEM and STM images, which is known to
have a local coverage of 1/3 ML (1 ML = 7.83 × 1014 atoms cm−2).

3. Results and discussion

3.1. LEEM results for different miscut directions

The topography of a Si(1 1 1) surface with a miscut orientation towards [1 1 2̄] and its evolution
during Ga deposition at about 650 ◦C is shown in figure 1. For the electron energy chosen
here, the Ga : Si(1 1 1)-

√
3 × √

3-R 30◦ reconstruction (henceforth simply referred to as
√

3)
appears dark, whereas the 7 × 7 superstructure appears bright. (This was confirmed by dark-field
images not shown here.) The nucleation of the

√
3 structure takes place both at initial domain

boundaries (IDBs) of the 7 × 7 reconstruction and on the lower terrace side of the step edges. At
the beginning, the

√
3 domains are composed of equilateral triangles, with the outward normal

of the edges pointing along 〈1̄ 1̄ 2〉. As can be seen from the images, the
√

3 areas grow with
comparable speed at the step edges and at the IDBs. It is also obvious that at the step edges the
growth proceeds only towards the lower terrace, whereas at the IDBs, the

√
3 structure develops

towards both the [1 1̄ 0] and the [1̄ 1 0], direction. As soon as the
√

3 reconstruction dominates the
surface topology, the remaining patches of the 7 × 7 form equilateral triangles with the outward
normal of the edges pointing along 〈1 1 2̄〉.

A different surface topology is observed, however, if the miscut points to the opposite
direction: figure 2 shows the evolution for the same preparation conditions as in figure 1, but
for a surface with a miscut along [1̄ 1̄ 2]. Again, the formation of a nanopattern of

√
3 domains

is observed. The
√

3 structure again grows from step edges (on lower terraces) and IDBs (both
towards [1̄ 1 0] and [1 1̄ 0] direction), but the growth rate at step edges is much smaller than at
the IDBs, and the triangular shape of the domains is less pronounced. This leads to the formation
of a rather rectangular or stripe pattern.

Yet another finding is observed for a miscut along a perpendicular direction, as depicted
in figure 3. Again, the

√
3 areas grow on the lower terrace side of step edges, i.e. towards

[1̄ 1 0], and with comparable rate at the IDBs. However, the growth at the IDBs proceeds mainly
along the [1 1 2̄] direction, whereas the growth towards the opposite direction, [1̄ 1̄ 2], is almost
completely suppressed. As a result,

√
3 patches form equilateral triangles at the IDBs, and right-

angled triangles at the step edges. Consequently, the remaining patches of the 7 × 7 structure
tend to resemble right-angled triangles, as can be seen from figure 3(b).

The LEEM images shown so far illustrate that the shape of the self-organized nanopattern
can be chosen by the miscut orientation. For conditions close to thermal equilibrium, the structural
size of the pattern is determined on the one hand by the width of the initial 7 × 7 domains on
the terraces, which to some extent can be tuned e.g. by the cooling rate at the 1 × 1 to 7 × 7
phase transition, and on the other hand by the terrace length, which can be controlled via the
miscut angle. In particular, for larger miscut angles in the range of a few tenths of a degree, our
findings imply that pattern length scales below 100 nm can be achieved. Moreover, the choice of
the deposition temperature would be less crucial in this case: the temperature has to be chosen
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(a)

500 nm

(b)

(c) (d)

112
_

110
_

Figure 1. Bright-field LEEM images of Si(1 1 1) during Ga deposition at about
650 ◦C (field of view: 2.5 µm, E = 3.5 eV). Step edges run from bottom left to
top right, the miscut (step-down) direction is towards [1 1 2̄]. (a) Ga-terminated√

3 domains (dark) nucleate at the initial domain boundaries (IDBs) of the 7 × 7
reconstruction (bright). From (a) to (d) the Ga coverage increases 0.06 ML (a),
0.19 ML (b), 0.26 ML (c) and 0.29 ML (d).

√
3 and remaining 7×7 domains are

composed of equilateral triangles in a christmas-tree arrangement. See the movie.

such that homogeneous nucleation within the initial 7 × 7 domains is suppressed. Hence, for
larger miscut angles, a wider temperature range could be used.

3.2. Scheme of
√

3 domain growth

In order to understand the dependence of the domain shape on the miscut orientation, it is
worthwhile to consider the similarities in the findings for all different miscut orientations.
Firstly, the domain boundaries between

√
3 and 7 × 7 always run along 〈1 1̄ 0〉, with the outward

normal of the
√

3 pointing towards 〈1̄ 1̄ 2〉. Secondly, the domain boundaries are very straight,
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(a)

1000 nm

(b)112
_ _

110
_

Figure 2. Bright-field LEEM images taken under similar conditions as in figure 1,
but with miscut towards [1̄ 1̄ 2]. (Field of view: 5µm, E = 2.4 eV.) The Ga
coverage amounts to 0.09 ML (a), and 0.26 ML (b). The triangular nature of
the

√
3 domain shape can still be seen, e.g. from the apexes in the red circles in

(b). Overall, a rectangular pattern is formed. See the movie.

(a)

500 nm

(b)

110
_

112
_ _

Figure 3. Bright-field LEEM images taken under similar conditions as in
figures 1 and 2, but with miscut towards [1̄ 1 0]. (Field of view: 2.5µm,
E = 3.5 eV.) The Ga coverage amounts to 0.11 ML (a) and 0.29 ML (b). See
the movie.

i.e. they do not exhibit many kinks. To a large extent, the kinks observed can be attributed to
the coalescence of different

√
3 domains. Thirdly, the

√
3 structure always nucleates both at the

lower terrace side of step edges as well as at IDBs, and step edges act as an efficient barrier for√
3 growth.
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From the observation that long straight domain boundaries between
√

3 and 7 × 7 domains
are preferred over kinky short ones, it can be concluded that kink formation is energetically
unfavourable. Starting with an ideal

√
3 domain with only straight domain boundaries, growth

can only take place by kink formation, i.e. by single kink formation at defects like existing kinks
(which are not available for an ideal

√
3 domain), step edges, or IDBs. The alternative mechanism,

namely double kink formation at the straight edges is strongly suppressed, due to the large kink
energy mentioned above. The

√
3 domain then grows while the single kink propagates, until it

reaches an apex of the
√

3 domain; growth around such apexes is again suppressed, because
it includes an intermediate double-kink-like stage. The injection of kinks from step edges and
IDBs is also promoted by an increased local adsorbate concentration at these defects [11], which
can as well be regarded to drive the initial nucleation of

√
3 domains.

Within this model, which is also sketched in figure 4, all the different growth speeds and
domain shapes can be well explained.

An azimuthal orientation of the miscut along [1 1 2̄] (cf figure 1) leads to a
√

3 domain growth
at the step edges as depicted in figure 4(a). This results in the formation of equilateral triangles
at the step edges. It has to be kept in mind that the

√
3 domains grow towards the lower terrace

only. In contrast, the
√

3 structure can grow towards both directions at the IDBs. Therefore, at the
IDBs the domains grow as shown in figures 4(b) and (c). This allows for a symmetrical growth
around the IDBs leading to the christmas-tree arrangement observed in figure 1.

For a miscut along [1̄ 1̄ 2] (cf figure 2), a domain boundary segment parallel to the step
edges will hardly move away from the step edge, since the only way to do so is via double
kink formation (see figure 4(d’)). Instead, a long stripe parallel to the step edge slowly evolves
by repeated kink injection from the step edge, as shown in figure 4(d). At the IDBs, again
figures 4(b) and (c) apply, which leads to an equal growth in the [1 1̄ 0] and [1̄ 1 0] directions.

If the miscut is perpendicular to [1̄ 1̄ 2] (cf figure 3), the growth at the step edges proceeds
as either sketched in figure 4(b) or figure 4(c). At the IDBs, figures 4(a) and (d) apply for
growth towards [1 1 2̄] and [1̄ 1̄ 2], respectively. Therefore, the growth at the IDBs cannot be
symmetrical for such a miscut orientation. The domains hardly grow towards the [1̄ 1̄ 2] direction
and equilateral triangles are formed much faster on the [1 1 2̄] side.

3.3. Generalizing the growth scheme

3.3.1. Comparison to STM. The growth mechanism proposed here is based on generic properties
of the surface system, i.e. the line and kink energies of the

√
3–7 × 7 domain boundary and their

anisotropy. This explains why similar results are found for this system under quite different
experimental conditions. Figure 5 shows a Si(1 1 1) surface with miscut along [1 1 2̄], monitored
with STM during thermal annealing at about 400 ◦C, after room temperature deposition of less
than 1/3 ML Ga. At this temperature, the magic clusters [12], which form at low temperature,
become unstable and Ga renucleates in

√
3 domains, leaving patches of bare Si(1 1 1)-7 × 7

behind. Compared to these 7 × 7 areas, the
√

3 domains on each terrace appear slightly brighter
for the imaging conditions chosen in figure 5. In agreement with the LEEM results (cf figure 1),
both the

√
3 domains and remaining the 7 × 7 domains form equilateral triangles for this miscut

orientation. Though the structures after room temperature deposition and annealing at 400 ◦C
are smaller than those obtained after deposition at 650 ◦C, this clearly reveals that the surface
topology is governed by energetics, not by surface kinetics.
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(a)

(b)

(c)

(d)

(d’)

I II III IV V

[112]

[110]

Figure 4. Sketch of a growth model showing subsequent stages (I–V) of the
evolution of a

√
3 domain (dark), for different orientations (a)–(d) with respect

to 1D defects (fuzzy yellowish lines), i.e. either step edges or IDBs. (I) Ideal
√

3
domain without kinks. (II) A single kink nucleates at the 1D defect, which then
(III) propagates towards the apex while the next kink is injected. (IV) and (V):
further evolution. In cases (a)–(c), the domain shape and aspect ratio is preserved,
whereas for (d) a narrow stripe along the 1D defect evolves. The less probable
case of double kink formation is shown in (d ′).

From atomically resolved STM images (not shown), we find that the domain boundaries,
which run along 〈1 1̄ 0〉, are connecting the corner holes of the 7 × 7 reconstruction, and that
the faulted halves of the 7 × 7 unit meshes are directly attached to the domain boundary. This
leaves the energetically favourable DAS structure [13] of the adjacent 7 × 7 unit cells virtually
unchanged and might explain the preferential orientation of the domain boundaries along 〈1 1̄ 0〉.
These findings are in agreement with a previous STM study [8], in which the authors investigated
the phase transition from

√
3 to 7 × 7 by thermal desorption after room temperature deposition

of more than 1/3 ML Ga. The authors also observed either a stripe-like or a triangular pattern,
depending on miscut orientation. Hence, the growth behaviour we found for the

√
3 domains is

not only virtually independent of surface kinetics, but it is also reversible.
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112–

100 nm

7×7

3

Figure 5. Empty-state STM images (U = −1V, I = 0.3 nA) of Ga/Si(1 1 1)
after room temperature deposition of 0.24 ML Ga, taken during annealing at
400 ◦C. The miscut is along [1 1 2̄]. On each terrace,

√
3 domains appear slightly

brighter than 7 × 7 domains. Both domain types form equilateral triangles. The
very bright areas are islands of bilayer height, with

√
3 structure.

3.3.2. Comparison to the Si(1 1 1) 1 × 1 to 7 × 7 phase transition. An even more general
scheme of the pattern formation is obtained when comparing the results shown so far to LEEM
images obtained during the phase transition of the bare substrate from 1 × 1 to 7 × 7 at 830 ◦C,
such as the one shown in figure 6. Here, 7 × 7 domains nucleate at the upper terrace side of the
step edges [14] (i.e. the 1 × 1 reconstruction remains at the lower terrace side), forming either
stripes or triangles, depending on the orientation of the meandering step edges. The domain
boundaries are very straight and run along 〈1 1̄ 0〉 directions. The outward normal orientation of
the 7 × 7 domains is identical to the one observed during the 7 × 7 to

√
3 transition.

All these similarities indicate that the interactions between 7 × 7 and 1 × 1 domains on one
hand, and 7 × 7 and

√
3 domains on the other hand, are comparable. As an important interaction

between the different phases, surface stress has to be considered [15]. With respect to the 7 × 7
reconstruction, both the Ga/Si-

√
3 as well as the Si-1 × 1 reconstruction impose less tensile

surface stress. For Ga/Si-
√

3, this stress relief has been reported to amount to 80 meV Å
−2

[16],
and corresponding values for Si-1 × 1 range from 30 to 60 meV Å

−2
[17, 18].

Regarding the kink energies and the anisotropy of the line energies, the local atomic
arrangement at the domain boundaries is essential. From this point of view, it is noteworthy
that the arrangement of the silicon atoms within the

√
3 and the 1 × 1 reconstruction is very

similar. In this respect, the
√

3 structure with Ga on T4 sites [19, 20] can be regarded as a
‘distorted bulk-terminated structure’. Since this allows for similar atomic arrangements at the
domain boundaries, our findings are explained in terms of generic properties of the Si(1 1 1)
surface, namely the high kink energies and anisotropy of the 1 × 1–7 × 7 domain boundaries,
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A

B

1000 nm

110
_

112
_

Figure 6. Bright-field LEEM image obtained during the 1 × 1 to 7 × 7 phase
transition of the bare Si(1 1 1) substrate at ≈830 ◦C. (Field of view: 5µm,
E = 12.1 eV.) 1 × 1 domains appear dark, 7 × 7 domains appear bright and are
attached to the upper terrace side of the step edges [14]. Depending on the step-
edge orientation, either a stripe-like (region A) or a triangular (region B) domain
shape is found.

which are preserved after Ga adsorption. Following this scheme, the formation of nanopatterns,
like the ones observed here, could as well be expected for similar adsorbate structures, as long
as the adsorbate-induced distortion of the bulk-terminated structure does not lead to too strong
tensile surface stress.

3.4. Testing the scheme: In/Si(1 1 1)-
√

3 × √
3-R 30◦

In order to verify the scheme described above, we also performed similar adsorption experiments
using indium instead of gallium. Typical results are shown in figure 7. As with Ga, high
temperature low coverage adsorption of In leads to the formation of a

√
3 × √

3-R 30◦

reconstruction [21]. Obviously, the nucleation and growth behaviour of this In/Si(1 1 1)-
√

3
structure is equivalent to Ga/Si(1 1 1)-

√
3. In the sample area depicted in figure 7, different

orientations of the step edges are found simultaneously. In striking agreement with Ga, the shape
of the nanopattern formed by In adsorption depends on this orientation. It is remarkable that the
average local In coverage at the stripe-pattern (see area ‘A’ in figure 7(b)) is much lower than
at the triangular pattern regions (e.g. area ‘B’ in the same image). On one hand, this reflects
the different growth velocities mentioned above, on the other hand this concentration gradient
clearly shows that the adsorbate mobility is high enough to allow diffusion in the micrometre
range. This can be regarded as a further important prerequisite for the presently observed pattern
formation.
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(a)

1000 nm

(b)112
_ _

110
_

A B

Figure 7. Bright-field LEEM images of Si(1 1 1) during indium deposition at
about 450 ◦C. (Field of view: 5µm, E = 11.1 eV.) (a) In/Si(1 1 1)-

√
3 domains

(dark) nucleate at step edges and domain boundaries of the 7 × 7 reconstruction.
The In coverage amounts to 0.05 ML. (b) After further In deposition (0.16 ML
coverage), different pattern shapes evolve for different step-edge orientations
(compare the regions labelled as A and B). See the movie.

4. Summary

In conclusion, we have shown that a Ga/Si(1 1 1) surface nanopattern can be achieved, the
shape of which can be tuned by an adequate surface miscut orientation. This allows for a further
degree of freedom for subsequent processing, e.g. for the growth of Ge 3D nanostructures [7].
The pattern formation is based on heterogeneous nucleation at domain boundaries of the initial
7 × 7 reconstruction and at step edges. Therefore, the size of the nanopattern can be tuned by the
absolute value of the miscut angle. Provided that the adsorbate surface diffusion is sufficient, and
provided that the adsorbate-induced surface reconstruction does not impose too strong tensile
surface stress, our proposed model for the underlying mechanism of pattern formation predicts
that other adsorbates on Si(1 1 1) could exhibit a similar behaviour. This prediction has been
confirmed replacing Ga with In, supporting the validity of the model.
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