81 research outputs found

    Planet geometric center tracker, volume 1 Final report, Oct. 1964 - Jul. 1967

    Get PDF
    Tracker for locating geometric centers of Mars, Venus, or Jupite

    Redshifts and Velocity Dispersions of Galaxy Clusters in the Horologium-Reticulum Supercluster

    Get PDF
    We present 118 new optical redshifts for galaxies in 12 clusters in the Horologium-Reticulum supercluster (HRS) of galaxies. For 76 galaxies, the data were obtained with the Dual Beam Spectrograph on the 2.3m telescope of the Australian National University at Siding Spring Observatory. After combining 42 previously unpublished redshifts with our new sample, we determine mean redshifts and velocity dispersions for 13 clusters, in which previous observational data were sparse. In six of the 13 clusters, the newly determined mean redshifts differ by more than 750 km/s from the published values. In the case of three clusters, A3047, A3109, and A3120, the redshift data indicate the presence of multiple components along the line of sight. The new cluster redshifts, when combined with other reliable mean redshifts for clusters in the HRS, are found to be distinctly bi-modal. Furthermore, the two redshift components are consistent with the bi-modal redshift distribution found for the inter-cluster galaxies in the HRS by Fleenor et al. (2005).Comment: 13 pages, 3 figures, Accepted to A

    The Influence of Change in Cardiorespiratory Fitness With Short-Term Exercise Training on Mortality Risk From The Ball State Adult Fitness Longitudinal Lifestyle Study

    Full text link
    Objective To assess the influence of changes in cardiorespiratory fitness (CRF) after exercise training on mortality risk in a cohort of self-referred, apparently healthy adults. Patients and Methods A total of 683 participants (404 men, 279 women; mean age: 42.7±11.0 y) underwent two maximal cardiopulmonary exercise tests (CPX) between March 20, 1970, and December 11, 2012, to assess CRF at baseline (CPX1) and post-exercise training (CPX2). Participants were followed for an average of 29.8±10.7 years after their CPX2. Cox proportional hazards models were performed to determine the relationship of CRF change with mortality, with change in CRF as a continuous variable, as well as a categorical variable. A Wald chi-square test was used to compare the coefficients estimating the relationship of peak oxygen consumption (VO2peak) at CPX1 with VO2peak measured at CPX2 with time until death for all-cause mortality. Results During the follow-up period there were 180 deaths. When assessed independently, there were 20% (95% CI, 10–49%) and 38% (95% CI, 7–66%) lower mortality risks per 1 metabolic equivalent improvement in CRF (P\u3c.01) in men and women, respectively, after multivariable adjustment. Those that remained unfit had ∼2-fold higher risk for all-cause mortality compared with those that remained fit and CRF at CPX2 was a stronger predictor of all-cause mortality than at CPX1 (P=.02). Conclusion Improving CRF through exercise training lowers mortality risk. Clinicians should encourage individuals to participate in exercise training to improve CRF to lower risk of mortality

    The Association between the Change in Directly Measured Cardiorespiratory Fitness across Time and Mortality Risk

    Get PDF
    Background The relationship between cardiorespiratory fitness (CRF) and mortality risk has typically been assessed using a single measurement, though some evidence suggests the change in CRF over time influences risk. This evidence is predominantly based on studies using estimated CRF (CRFe). The strength of this relationship using change in directly measured CRF over time in apparently healthy men and women is not well understood. Purpose To examine the association of change in CRF over time, measured using cardiopulmonary exercise testing (CPX), with all-cause and disease-specific mortality and to compare baseline and subsequent CRF measurements as predictors of all-cause mortality. Methods Participants included 833 apparently healthy men and women (42.9 ± 10.8 years) who underwent two maximal CPXs, the second CPX being ≥1 year following the baseline assessment (mean 8.6 years, range 1.0 to 40.3 years). Participants were followed for up to 17.7 (SD 11.8) years for all-cause-, cardiovascular disease- (CVD), and cancer mortality. Cox-proportional hazard models were performed to determine the association between the change in CRF, computed as visit 1 (CPX1) peak oxygen consumption (VO2peak [mL·kg−1·min−1]) – visit 2 (CPX2) VO2peak, and mortality outcomes. A Wald-Chi square test of equality was used to compare the strength of CPX1 to CPX2 VO2peak in predicting mortality. Results During follow-up, 172 participants died. Overall, the change in CPX-CRF was inversely related to all-cause, CVD, and cancer mortality (p < 0.05). Each 1 mL·kg−1·min−1 increase was associated with a ~11, 15, and 16% (all p < 0.001) reduction in all-cause, CVD, and cancer mortality, respectively. The inverse relationship between CRF and all-cause mortality was significant (p < 0.05) when men and women were examined independently, after adjusting for years since first CPX, baseline VO2peak, and age. Further, the Wald Chi-square test of equality found CPX2 VO2peak to be a significantly stronger predictor of all-cause mortality than CPX1 VO2peak (p < 0.05). Conclusion The change in CRF over time was inversely related to mortality outcomes, and mortality was better predicted by CRF measured at subsequent test than CPX1 CRF. These findings emphasize the importance of adopting lifestyle behaviors that promote CRF, as well as support the need for routine assessment of CRF in clinical practice to better assess risk

    Large-Scale Velocity Structures in the Horologium-Reticulum Supercluster

    Get PDF
    We present 547 optical redshifts obtained for galaxies in the region of the Horologium-Reticulum Supercluster (HRS) using the 6dF multi-fiber spectrograph on the UK Schmidt Telescope at the Anglo Australian Observatory. The HRS covers an area of more than 12deg x 12deg on the sky centered at approximately RA = 03h19m, DEC = -50deg 02amin. Our 6dF observations concentrate upon the inter-cluster regions of the HRS, from which we describe four primary results. First, the HRS spans at least the redshift range from 17,000 to 22,500 km s^-1. Second, the overdensity of galaxies in the inter-cluster regions of the HRS in this redshift range is estimated to be 2.4, or del rho/ rho ~ 1.4. Third, we find a systematic trend of increasing redshift along a Southeast-Northwest (SE-NW) spatial axis in the HRS, in that the mean redshift of HRS members increases by more than 1500 km s^-1 from SE to NW over a 12 deg region. Fourth, the HRS is bi-modal in redshift with a separation of ~ 2500 km s^-1 (35 Mpc) between the higher and lower redshift peaks. This fact is particularly evident if the above spatial-redshift trend is fitted and removed. In short, the HRS appears to consist of two components in redshift space, each one exhibiting a similar systematic spatial-redshift trend along a SE-NW axis. Lastly, we compare these results from the HRS with the Shapley supercluster and find similar properties and large-scale features.Comment: 20 pages, 9 figures, accepted to A

    WASP-1b and WASP-2b: two new transiting exoplanets detected with SuperWASP and SOPHIE

    Get PDF
    We have detected low-amplitude radial-velocity variations in two stars, USNO-B1.0 1219-0005465 (GSC 02265-00107 = WASP-1) and USNO-B1.0 0964-0543604 (GSC 00522-01199 = WASP-2). Both stars were identified as being likely host stars of transiting exoplanets in the 2004 SuperWASP wide-field transit survey. Using the newly commissioned radial-velocity spectrograph SOPHIE at the Observatoire de Haute-Provence, we found that both objects exhibit reflex orbital radial-velocity variations with amplitudes characteristic of planetary-mass companions and in-phase with the photometric orbits. Line-bisector studies rule out faint blended binaries as the cause of either the radial-velocity variations or the transits. We perform preliminary spectral analyses of the host stars, which together with their radial-velocity variations and fits to the transit light curves yield estimates of the planetary masses and radii. WASP-1b and WASP-2b have orbital periods of 2.52 and 2.15 d, respectively. Given mass estimates for their F7V and K1V primaries, we derive planet masses 0.80-0.98 and 0.81-0.95 times that of Jupiter, respectively. WASP-1b appears to have an inflated radius of at least 1.33 RJup, whereas WASP-2b has a radius in the range 0.65-1.26 RJu

    Pigment epithelium-derived factor protects retinal ganglion cells

    Get PDF
    BACKGROUND: Retinal ganglion cells (RGCs) are responsible for the transmission of visual signals to the brain. Progressive death of RGCs occurs in glaucoma and several other retinal diseases, which can lead to visual impairment and blindness. Pigment epithelium-derived factor (PEDF) is a potent antiangiogenic, neurotrophic and neuroprotective protein that can protect neurons from a variety of pathologic insults. We tested the effects of PEDF on the survival of cultured adult rat RGCs in the presence of glaucoma-like insults, including cytotoxicity induced by glutamate or withdrawal of trophic factors. RESULTS: Cultured adult rat RGCs exposed to glutamate for 3 days showed signs of cytotoxicity and death. The toxic effect of glutamate was concentration-dependent (EC(50 )= 31 μM). In the presence of 100 μM glutamate, RGC number decreased to 55 ± 4% of control (mean ± SEM, n = 76; P < 0.001). The glutamate effect was completely eliminated by MK801, an NMDA receptor antagonist. Trophic factor withdrawal also caused a similar loss of RGCs (54 ± 4%, n = 60, P < 0.001). PEDF protected against both insults with EC(50 )values of 13.6 ng/mL (glutamate) and 3.4 ng/mL (trophic factor withdrawal), respectively. At 100 ng/mL, PEDF completely protected the cells from both insults. Inhibitors of the nuclear factor κB (NFκB) and extracellular signal-regulated kinases 1/2 (ERK1/2) significantly reduced the protective effects of PEDF. CONCLUSION: We demonstrated that PEDF potently and efficaciously protected adult rat RGCs from glutamate- and trophic factor withdrawal-mediated cytotoxicity, via the activation of the NFκB and ERK1/2 pathways. The neuroprotective effect of PEDF represents a novel approach for potential treatment of retinopathies, such as glaucoma

    Three Linked Vasculopathic Processes Characterize Kawasaki Disease: A Light and Transmission Electron Microscopic Study

    Get PDF
    Kawasaki disease is recognized as the most common cause of acquired heart disease in children in the developed world. Clinical, epidemiologic, and pathologic evidence supports an infectious agent, likely entering through the lung. Pathologic studies proposing an acute coronary arteritis followed by healing fail to account for the complex vasculopathy and clinical course.Specimens from 32 autopsies, 8 cardiac transplants, and an excised coronary aneurysm were studied by light (n=41) and transmission electron microscopy (n=7). Three characteristic vasculopathic processes were identified in coronary (CA) and non-coronary arteries: acute self-limited necrotizing arteritis (NA), subacute/chronic (SA/C) vasculitis, and luminal myofibroblastic proliferation (LMP). NA is a synchronous neutrophilic process of the endothelium, beginning and ending within the first two weeks of fever onset, and progressively destroying the wall into the adventitia causing saccular aneurysms, which can thrombose or rupture. SA/C vasculitis is an asynchronous process that can commence within the first two weeks onward, starting in the adventitia/perivascular tissue and variably inflaming/damaging the wall during progression to the lumen. Besides fusiform and saccular aneurysms that can thrombose, SA/C vasculitis likely causes the transition of medial and adventitial smooth muscle cells (SMC) into classic myofibroblasts, which combined with their matrix products and inflammation create progressive stenosing luminal lesions (SA/C-LMP). Remote LMP apparently results from circulating factors. Veins, pulmonary arteries, and aorta can develop subclinical SA/C vasculitis and SA/C-LMP, but not NA. The earliest death (day 10) had both CA SA/C vasculitis and SA/C-LMP, and an "eosinophilic-type" myocarditis.NA is the only self-limiting process of the three, is responsible for the earliest morbidity/mortality, and is consistent with acute viral infection. SA/C vasculitis can begin as early as NA, but can occur/persist for months to years; LMP causes progressive arterial stenosis and thrombosis and is composed of unique SMC-derived pathologic myofibroblasts

    State-of-the-art and recent progress in phytoplankton succession modelling

    No full text
    Dynamic phytoplankton succession models are an essential instrument to improve scientific knowledge on the development of algal blooms characterized by a specific composition and to support water quality management decisions. The peculiar structure and formulation of these models generate questions that differ from the ones found in modelling eutrophication and are related to simulation of multiple phytoplankton groups. In this work, a classification of phytoplankton models simulating several algal groups is provided. Coupled succession models, explicitly describing nonlinear interactions between physical and biological processes and capturing the response of phytoplankton community to environmental changes, are analyzed in detail. Approaches, actual achievements, and developments of succession models are examined. In particular, we discuss the level of discrimination adopted, number and type of algal groups simulated, biomass unit employed, type of model evaluation used, and efficacy of prediction achieved. Simulations of multiple phytoplankton group behaviour still produce significant deviations over time or in magnitude compared to the patterns observed. Frequently, goodness-of-fit estimation is only graphical and statistics adopted do not allow a direct comparison between different models. To facilitate comparisons we propose the use of a common statistic that would be applied, separately, to all the phytoplankton groups differentiated in each model. Each model’s level of complexity in relation to prediction ability is also analyzed. Through this work we aspire to orient upcoming works and encourage others to apply mechanistic succession models, including the description of physical and biological relationships, specific phytoplankton behaviour and interactions between phytoplankton groups.Anna Rigosi, William Fleenor and Francisco Rued
    • …
    corecore