34 research outputs found

    GANDALF - Graphical Astrophysics code for N-body Dynamics And Lagrangian Fluids

    Get PDF
    GANDALF is a new hydrodynamics and N-body dynamics code designed for investigating planet formation, star formation and star cluster problems. GANDALF is written in C++, parallelised with both OpenMP and MPI and contains a python library for analysis and visualisation. The code has been written with a fully object-oriented approach to easily allow user-defined implementations of physics modules or other algorithms. The code currently contains implementations of Smoothed Particle Hydrodynamics, Meshless Finite-Volume and collisional N-body schemes, but can easily be adapted to include additional particle schemes. We present in this paper the details of its implementation, results from the test suite, serial and parallel performance results and discuss the planned future development. The code is freely available as an open source project on the code-hosting website github at https://github.com/gandalfcode/gandalf and is available under the GPLv2 license.This research was supported by the DFG cluster of excellence "Origin and Structure of the Universe", DFG Projects 841797-4, 841798-2 (DAH, GPR), the DISCSIM project, grant agreement 341137 funded by the European Research Council under ERC-2013-ADG (GPR, RAB). Some development of the code and simulations have been carried out on the computing facilities of the Computational centre for Particle and Astrophysics (C2PAP) and on the DiRAC Data Analytic system at the University of Cambridge, operated by the University of Cambridge High Performance Computing Service on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk); the equipment was funded by BIS National E-infrastructure capital grant (ST/K001590/1), STFC capital grants ST/H008861/1 and ST/H00887X/1, and STFC DiRAC Operations grant ST/K00333X/1

    Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates

    Get PDF
    Background: Vaccines to prevent coronavirus disease 2019 (Covid-19) are urgently needed. The effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines on viral replication in both upper and lower airways is important to evaluate in nonhuman primates. Methods: Nonhuman primates received 10 or 100 μg of mRNA-1273, a vaccine encoding the prefusion-stabilized spike protein of SARS-CoV-2, or no vaccine. Antibody and T-cell responses were assessed before upper- and lower-airway challenge with SARS-CoV-2. Active viral replication and viral genomes in bronchoalveolar-lavage (BAL) fluid and nasal swab specimens were assessed by polymerase chain reaction, and histopathological analysis and viral quantification were performed on lung-tissue specimens. Results: The mRNA-1273 vaccine candidate induced antibody levels exceeding those in human convalescent-phase serum, with live-virus reciprocal 50% inhibitory dilution (ID50) geometric mean titers of 501 in the 10-μg dose group and 3481 in the 100-μg dose group. Vaccination induced type 1 helper T-cell (Th1)-biased CD4 T-cell responses and low or undetectable Th2 or CD8 T-cell responses. Viral replication was not detectable in BAL fluid by day 2 after challenge in seven of eight animals in both vaccinated groups. No viral replication was detectable in the nose of any of the eight animals in the 100-μg dose group by day 2 after challenge, and limited inflammation or detectable viral genome or antigen was noted in lungs of animals in either vaccine group. Conclusions: Vaccination of nonhuman primates with mRNA-1273 induced robust SARS-CoV-2 neutralizing activity, rapid protection in the upper and lower airways, and no pathologic changes in the lung. (Funded by the National Institutes of Health and others.)

    The mechanisms of action of vaccines containing aluminum adjuvants: an in vitro vs in vivo paradigm

    Get PDF
    corecore