1,797 research outputs found

    A Monte Carlo study of fast neutron kinetics in small metal assemblies

    Get PDF

    Coupling effects in fast reactors using the Monte Carlo technique

    Get PDF

    Method and apparatus for spur-reduced digital sinusoid synthesis

    Get PDF
    A technique for reducing the spurious signal content in digital sinusoid synthesis is presented. Spur reduction is accomplished through dithering both amplitude and phase values prior to word-length reduction. The analytical approach developed for analog quantization is used to produce new bounds on spur performance in these dithered systems. Amplitude dithering allows output word-length reduction without introducing additional spurs. Effects of periodic dither similar to that produced by a pseudo-noise (PN) generator are analyzed. This phase dithering method provides a spur reduction of 6(M + 1) dB per phase bit when the dither consists of M uniform variates. While the spur reduction is at the expense of an increase in system noise, the noise power can be made white, making the power spectral density small. This technique permits the use of a smaller number of phase bits addressing sinusoid look-up tables, resulting in an exponential decrease in system complexity. Amplitude dithering allows the use of less complicated multipliers and narrower data paths in purely digital applications, as well as the use of coarse-resolution, highly-linear digital-to-analog converters (DAC's) to obtain spur performance limited by the DAC linearity rather than its resolution

    Sodium fast reactor safety and licensing research plan. Volume I.

    Get PDF
    This report proposes potential research priorities for the Department of Energy (DOE) with the intent of improving the licensability of the Sodium Fast Reactor (SFR). In support of this project, five panels were tasked with identifying potential safety-related gaps in available information, data, and models needed to support the licensing of a SFR. The areas examined were sodium technology, accident sequences and initiators, source term characterization, codes and methods, and fuels and materials. It is the intent of this report to utilize a structured and transparent process that incorporates feedback from all interested stakeholders to suggest future funding priorities for the SFR research and development. While numerous gaps were identified, two cross-cutting gaps related to knowledge preservation were agreed upon by all panels and should be addressed in the near future. The first gap is a need to re-evaluate the current procedures for removing the Applied Technology designation from old documents. The second cross-cutting gap is the need for a robust Knowledge Management and Preservation system in all SFR research areas. Closure of these and the other identified gaps will require both a reprioritization of funding within DOE as well as a re-evaluation of existing bureaucratic procedures within the DOE associated with Applied Technology and Knowledge Management

    Effect of gonadotropin inhibitory hormone (GnIH) on luteinizing hormone secretion in man

    Get PDF
    BACKGROUND: Gonadotropin-inhibitory hormone (GnIH, human homologue of RFRP-3) suppresses gonadotropin secretion in animal models, but its effects have not been studied in the human. OBJECTIVE: We tested the hypotheses that exogenous GnIH inhibits LH secretion (i) in postmenopausal women and (ii) in men concurrently administered exogenous kisspeptin. DESIGN: Following in vitro and in vivo preclinical studies to functionally characterize the GnIH peptide, a dose-finding study (human GnIH: 1·5-150 μg/kg/h, iv for 3 h) was undertaken, and 50 μg/kg/h selected for further evaluation. Five postmenopausal women were administered 50 μg/kg/h iv infusion for 3 h or vehicle on two separate days. Four men were administered kisspeptin-10 (0·3 μg/kg iv bolus) with simultaneous infusion of GnIH (50 μg/kg/h, iv for 3 h) or vehicle. PARTICIPANTS: Healthy postmenopausal women (mean age 58 ± 2 years, LH: 30·8 ± 2·9 IU/l, FSH: 78·7 ± 6·4 IU/l, oestradiol: <50 pmol/l) and men (39·8 ± 2·1 years, mean total testosterone 12·1 ± 1·8 nmol/l, LH 2·2 ± 0·2 IU/l). PRIMARY OUTCOME: Change in area under curve (AUC) of LH during GnIHvs vehicle. RESULTS: During GnIH administration in postmenopausal women, LH secretion decreased (ΔAUC: -9·9 ± 1·8 IU/3 h) vs vehicle (ΔAUC: -0·5 ± 1·7 IU/3 h; P = 0·02). Kisspeptin-10-stimulated LH responses in men were not affected by GnIH co-administration (60-min AUC of LH 6·2 ± 0·8 IU/h with kisspeptin-10 alone, 6·3 ± 1·0 IU/h, kisspeptin-10 with GnIH, P = 0·72). Exogenous GnIH was well tolerated, with no adverse events reported. CONCLUSIONS: Gonadotropin-inhibitory hormone decreased LH secretion in postmenopausal women in this first-in-human study. Kisspeptin-stimulated LH secretion in men was not inhibited during concomitant administration of GnIH

    Fast Spectrum Molten Salt Reactor Options

    Get PDF
    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option

    FHR Generic Design Criteria

    Get PDF
    The purpose of this document is to provide an initial, focused reference to the safety characteristics of and a licensing approach for Fluoride-Salt-Cooled High-Temperature Reactors (FHRs). The document does not contain details of particular reactor designs nor does it attempt to identify or classify either design basis or beyond design basis accidents. Further, this document is an initial attempt by a small set of subject matter experts to document the safety and licensing characteristics of FHRs for a larger audience. The document is intended to help in setting the safety and licensing research, development, and demonstration path forward. Input from a wider audience, further technical developments, and additional study will be required to develop a consensus position on the safety and licensing characteristics of FHRs. This document begins with a brief overview of the attributes of FHRs and then a general description of their anticipated safety performance. Following this, an overview of the US nuclear power plant approval process is provided that includes both test and power reactors, as well as the role of safety standards in the approval process. The document next describes a General Design Criteria (GDC) - based approach to licensing an FHR and provides an initial draft set of FHR GDCs. The document concludes with a description of a path forward toward developing an FHR safety standard that can support both a test and power reactor licensing process

    National survey of the management of Diabetic Ketoacidosis (DKA) in the UK in 2014

    Get PDF
    AIM: To examine, in a national survey, the outcomes of adult patients presenting with DKA in 2014, mapped against accepted UK national guidance.  METHODS: Data were collected in a standardized form covering clinical and biochemical outcomes, risk and discharge planning. The form was sent to all UK diabetes specialist teams (n = 220). Anonymized data were collected on five consecutive patients admitted with DKA between 1 May 2014 and 30 November 2014.  RESULTS: A total of 283 forms were received (n = 281 patients) from 72 hospitals, of which 71.4% used the national guidelines. The results showed that 7.8% of cases occurred in existing inpatients, 6.1% of admissions were newly diagnosed diabetes and 33.7% of patients had had at least one episode of DKA in the preceding year. The median times to starting 0.9% sodium chloride and intravenous insulin were 41.5 and 60 min, respectively. The median time to resolution was 18.7 h and the median length of hospital stay was 2.6 days. Significant adverse biochemical outcomes occurred, with 27.6% of patients developing hypoglycaemia and 55% reported as having hypokalaemia. There were also significant issues with care processes. Initial nurse-led observations were carried out well, but subsequent patient monitoring remained suboptimal. Most patients were not seen by a member of the diabetes specialist team during the first 6 h, but 95% were seen before discharge. A significant minority of discharge letters to primary care did not contain necessary information.  CONCLUSION: Despite widespread adoption of national guidance, several areas of management of DKA are suboptimal, being associated with avoidable biochemical and clinical risk
    corecore