519 research outputs found
On Uniquely Closable and Uniquely Typable Skeletons of Lambda Terms
Uniquely closable skeletons of lambda terms are Motzkin-trees that
predetermine the unique closed lambda term that can be obtained by labeling
their leaves with de Bruijn indices. Likewise, uniquely typable skeletons of
closed lambda terms predetermine the unique simply-typed lambda term that can
be obtained by labeling their leaves with de Bruijn indices.
We derive, through a sequence of logic program transformations, efficient
code for their combinatorial generation and study their statistical properties.
As a result, we obtain context-free grammars describing closable and uniquely
closable skeletons of lambda terms, opening the door for their in-depth study
with tools from analytic combinatorics.
Our empirical study of the more difficult case of (uniquely) typable terms
reveals some interesting open problems about their density and asymptotic
behavior.
As a connection between the two classes of terms, we also show that uniquely
typable closed lambda term skeletons of size are in a bijection with
binary trees of size .Comment: Pre-proceedings paper presented at the 27th International Symposium
on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur,
Belgium, 10-12 October 2017 (arXiv:1708.07854
Laws relating runs, long runs, and steps in gambler's ruin, with persistence in two strata
Define a certain gambler's ruin process \mathbf{X}_{j}, \mbox{ \ }j\ge 0,
such that the increments
take values and satisfy ,
all , where if , and if .
Here denote persistence parameters and with
. The process starts at and terminates when
. Denote by , , and ,
respectively, the numbers of runs, long runs, and steps in the meander portion
of the gambler's ruin process. Define and let for some . We show exists in an explicit form. We obtain a
companion theorem for the last visit portion of the gambler's ruin.Comment: Presented at 8th International Conference on Lattice Path
Combinatorics, Cal Poly Pomona, Aug., 2015. The 2nd version has been
streamlined, with references added, including reference to a companion
document with details of calculations via Mathematica. The 3rd version has 2
new figures and improved presentatio
Airy Distribution Function: From the Area Under a Brownian Excursion to the Maximal Height of Fluctuating Interfaces
The Airy distribution function describes the probability distribution of the
area under a Brownian excursion over a unit interval. Surprisingly, this
function has appeared in a number of seemingly unrelated problems, mostly in
computer science and graph theory. In this paper, we show that this
distribution also appears in a rather well studied physical system, namely the
fluctuating interfaces. We present an exact solution for the distribution
P(h_m,L) of the maximal height h_m (measured with respect to the average
spatial height) in the steady state of a fluctuating interface in a one
dimensional system of size L with both periodic and free boundary conditions.
For the periodic case, we show that P(h_m,L)=L^{-1/2}f(h_m L^{-1/2}) for all L
where the function f(x) is the Airy distribution function. This result is valid
for both the Edwards-Wilkinson and the Kardar-Parisi-Zhang interfaces. For the
free boundary case, the same scaling holds P(h_m,L)=L^{-1/2}F(h_m L^{-1/2}),
but the scaling function F(x) is different from that of the periodic case. We
compute this scaling function explicitly for the Edwards-Wilkinson interface
and call it the F-Airy distribution function. Numerical simulations are in
excellent agreement with our analytical results. Our results provide a rather
rare exactly solvable case for the distribution of extremum of a set of
strongly correlated random variables. Some of these results were announced in a
recent Letter [ S.N. Majumdar and A. Comtet, Phys. Rev. Lett., 92, 225501
(2004)].Comment: 27 pages, 10 .eps figures included. Two figures improved, new
discussion and references adde
Target annihilation by diffusing particles in inhomogeneous geometries
The survival probability of immobile targets, annihilated by a population of
random walkers on inhomogeneous discrete structures, such as disordered solids,
glasses, fractals, polymer networks and gels, is analytically investigated. It
is shown that, while it cannot in general be related to the number of distinct
visited points, as in the case of homogeneous lattices, in the case of bounded
coordination numbers its asymptotic behaviour at large times can still be
expressed in terms of the spectral dimension , and its exact
analytical expression is given. The results show that the asymptotic survival
probability is site independent on recurrent structures (),
while on transient structures () it can strongly depend on the
target position, and such a dependence is explicitly calculated.Comment: To appear in Physical Review E - Rapid Communication
Understanding Search Trees via Statistical Physics
We study the random m-ary search tree model (where m stands for the number of
branches of a search tree), an important problem for data storage in computer
science, using a variety of statistical physics techniques that allow us to
obtain exact asymptotic results. In particular, we show that the probability
distributions of extreme observables associated with a random search tree such
as the height and the balanced height of a tree have a traveling front
structure. In addition, the variance of the number of nodes needed to store a
data string of a given size N is shown to undergo a striking phase transition
at a critical value of the branching ratio m_c=26. We identify the mechanism of
this phase transition, show that it is generic and occurs in various other
problems as well. New results are obtained when each element of the data string
is a D-dimensional vector. We show that this problem also has a phase
transition at a critical dimension, D_c= \pi/\sin^{-1}(1/\sqrt{8})=8.69363...Comment: 11 pages, 8 .eps figures included. Invited contribution to
STATPHYS-22 held at Bangalore (India) in July 2004. To appear in the
proceedings of STATPHYS-2
Multiplicative anomaly and zeta factorization
Some aspects of the multiplicative anomaly of zeta determinants are
investigated. A rather simple approach is adopted and, in particular, the
question of zeta function factorization, together with its possible relation
with the multiplicative anomaly issue is discussed. We look primordially into
the zeta functions instead of the determinants themselves, as was done in
previous work. That provides a supplementary view, regarding the appearance of
the multiplicative anomaly. Finally, we briefly discuss determinants of zeta
functions that are not in the pseudodifferential operator framework.Comment: 20 pages, AIP styl
Norbin ablation results in defective adult hippocampal neurogenesis and depressive-like behavior in mice
Adult neurogenesis in the hippocampus subgranular zone is associated with the etiology and treatment efficiency of depression. Factors that affect adult hippocampal neurogenesis have been shown to contribute to the neuropathology of depression. Glutamate, the major excitatory neurotransmitter, plays a critical role in different aspects of neurogenesis. Of the eight metabotropic glutamate receptors (mGluRs), mGluR5 is the most highly expressed in neural stem cells. We previously identified Norbin as a positive regulator of mGluR5 and showed that its expression promotes neurite outgrowth. In this study, we investigated the role of Norbin in adult neurogenesis and depressive-like behaviors using Norbin-deficient mice. We found that Norbin deletion significantly reduced hippocampal neurogenesis; specifically, the loss of Norbin impaired the proliferation and maturation of newborn neurons without affecting cell-fate specification of neural stem cells/neural progenitor cells (NSCs/NPCs). Norbin is highly expressed in the granular neurons in the dentate gyrus of the hippocampus, but it is undetectable in NSCs/NPCs or immature neurons, suggesting that the effect of Norbin on neurogenesis is likely caused by a nonautonomous niche effect. In support of this hypothesis, we found that the expression of a cell-cell contact gene, Desmoplakin, is greatly reduced in Norbin-deletion mice. Moreover, Norbin-KO mice show an increased immobility in the forced-swim test and the tail-suspension test and reduced sucrose preference compared with wild-type controls. Taken together, these results show that Norbin is a regulator of adult hippocampal neurogenesis and that its deletion causes depressive-like behaviors
Properties of Random Graphs with Hidden Color
We investigate in some detail a recently suggested general class of ensembles
of sparse undirected random graphs based on a hidden stub-coloring, with or
without the restriction to nondegenerate graphs. The calculability of local and
global structural properties of graphs from the resulting ensembles is
demonstrated. Cluster size statistics are derived with generating function
techniques, yielding a well-defined percolation threshold. Explicit rules are
derived for the enumeration of small subgraphs. Duality and redundancy is
discussed, and subclasses corresponding to commonly studied models are
identified.Comment: 14 pages, LaTeX, no figure
Free Meixner states
Free Meixner states are a class of functionals on non-commutative polynomials
introduced in math.CO/0410482. They are characterized by a resolvent-type form
for the generating function of their orthogonal polynomials, by a recursion
relation for those polynomials, or by a second-order non-commutative
differential equation satisfied by their free cumulant functional. In this
paper, we construct an operator model for free Meixner states. By combinatorial
methods, we also derive an operator model for their free cumulant functionals.
This, in turn, allows us to construct a number of examples. Many of these
examples are shown to be trivial, in the sense of being free products of
functionals which depend on only a single variable, or rotations of such free
products. On the other hand, the multinomial distribution is a free Meixner
state and is not a product. Neither is a large class of tracial free Meixner
states which are analogous to the simple quadratic exponential families in
statistics.Comment: 30 page
Counting, generating and sampling tree alignments
Pairwise ordered tree alignment are combinatorial objects that appear in RNA
secondary structure comparison. However, the usual representation of tree
alignments as supertrees is ambiguous, i.e. two distinct supertrees may induce
identical sets of matches between identical pairs of trees. This ambiguity is
uninformative, and detrimental to any probabilistic analysis.In this work, we
consider tree alignments up to equivalence. Our first result is a precise
asymptotic enumeration of tree alignments, obtained from a context-free grammar
by mean of basic analytic combinatorics. Our second result focuses on
alignments between two given ordered trees and . By refining our grammar
to align specific trees, we obtain a decomposition scheme for the space of
alignments, and use it to design an efficient dynamic programming algorithm for
sampling alignments under the Gibbs-Boltzmann probability distribution. This
generalizes existing tree alignment algorithms, and opens the door for a
probabilistic analysis of the space of suboptimal RNA secondary structures
alignments.Comment: ALCOB - 3rd International Conference on Algorithms for Computational
Biology - 2016, Jun 2016, Trujillo, Spain. 201
- …