35 research outputs found

    Unconditional entanglement interface for quantum networks

    Get PDF
    Entanglement drives nearly all proposed quantum information technologies. The suppression of the uncertainty in joint quadrature measurements below the level of vacuum fluctuations is a signature of non-classical correlations. Entangling frequency modes of optical fields has attracted increased attention in recent years, as a quantum network would rely on interfacing light at telecommunication wavelengths with matter-based quantum memories that are addressable at visible wavelengths. By up-converting part of a 1550 nm squeezed vacuum state to 532 nm, we demonstrate the generation and complete characterization of strong continuous-variable entanglement between widely separated frequencies. Non-classical correlations were observed in joint quadrature measurements of the 1550 nm and 532 nm fields, showing a maximum noise suppression 5.5 dB below vacuum. A spectrum was measured to demonstrate over 3 dB noise suppression up to 20 MHzmeasurement frequency. Our versatile technique combines strong non-classical correlations, large bandwidth and, in principle, the ability to entangle the telecommunication wavelength of 1550 nm with any optical wavelength, making this approach highly relevant to emerging proposals for quantum communication and computing

    A quantum gate array can be programmed to evaluate the expectation value of any operator

    Get PDF
    A programmable gate array is a circuit whose action is controlled by input data. In this letter we describe a special--purpose quantum circuit that can be programmed to evaluate the expectation value of any operator OO acting on a space of states of NN dimensions. The circuit has a program register whose state ∣Κ(O)>P|\Psi(O)>_P encodes the operator OO whose expectation value is to be evaluated. The method requires knowledge of the expansion of OO in a basis of the space of operators. We discuss some applications of this circuit and its relation to known instances of quantum state tomography.Comment: 4 pages, 3 figures include

    States for phase estimation in quantum interferometry

    Full text link
    Ramsey interferometry allows the estimation of the phase ϕ\phi of rotation of the pseudospin vector of an ensemble of two-state quantum systems. For ϕ\phi small, the noise-to-signal ratio scales as the spin-squeezing parameter Ο\xi, with Ο<1\xi<1 possible for an entangled ensemble. However states with minimum Ο\xi are not optimal for single-shot measurements of an arbitrary phase. We define a phase-squeezing parameter, ζ\zeta, which is an appropriate figure-of-merit for this case. We show that (unlike the states that minimize Ο\xi), the states that minimize ζ\zeta can be created by evolving an unentangled state (coherent spin state) by the well-known 2-axis counter-twisting Hamiltonian. We analyse these and other states (for example the maximally entangled state, analogous to the optical "NOON" state âˆŁÏˆ>=(∣N,0>+∣0,N>)/2|\psi> = (|N,0>+|0,N>)/\sqrt{2}) using several different properties, including Ο\xi, ζ\zeta, the coefficients in the pseudo angular momentum basis (in the three primary directions) and the angular Wigner function W(Ξ,ϕ)W(\theta,\phi). Finally we discuss the experimental options for creating phase squeezed states and doing single-shot phase estimation.Comment: 8 pages and 5 figure

    On the Phase Covariant Quantum Cloning

    Get PDF
    It is known that in phase covariant quantum cloning the equatorial states on the Bloch sphere can be cloned with a fidelity higher than the optimal bound established for universal quantum cloning. We generalize this concept to include other states on the Bloch sphere with a definite zz component of spin. It is shown that once we know the zz component, we can always clone a state with a fidelity higher than the universal value and that of equatorial states. We also make a detailed study of the entanglement properties of the output copies and show that the equatorial states are the only states which give rise to separable density matrix for the outputs.Comment: Revtex4, 6 pages, 5 eps figure

    Linear optical implementation of a single mode quantum filter and generation of multi-photon polarization entangled state

    Get PDF
    We propose a scheme to implement a single-mode quantum filter, which selectively eliminates the one-photon state in a quantum state α∣0>+ÎČ∣1>+γ∣2>\alpha|0>+\beta|1>+\gamma|2>. The vacuum state and the two photon state are transmitted without any change. This scheme requires single-photon sources, linear optical elements and photon detectors. Furthermore we demonstrate, how this filter can be used to realize a two-qubit projective measurement and to generate multi-photon polarization entangled states.Comment: revision submitted to PR

    Super-resolving phase measurements with a multi-photon entangled state

    Full text link
    Using a linear optical elements and post-selection, we construct an entangled polarization state of three photons in the same spatial mode. This state is analogous to a ``photon-number path entangled state'' and can be used for super-resolving interferometry. Measuring a birefringent phase shift, we demonstrate two- and three-fold improvements in phase resolution.Comment: 4 pages, 3 figure

    A high-fidelity noiseless amplifier for quantum light states

    Full text link
    Noise is the price to pay when trying to clone or amplify arbitrary quantum states. The quantum noise associated to linear phase-insensitive amplifiers can only be avoided by relaxing the requirement of a deterministic operation. Here we present the experimental realization of a probabilistic noiseless linear amplifier that is able to amplify coherent states at the highest level of effective gain and final state fidelity ever reached. Based on a sequence of photon addition and subtraction, and characterized by a significant amplification and low distortions, this high-fidelity amplification scheme may become an essential tool for quantum communications and metrology, by enhancing the discrimination between partially overlapping quantum states or by recovering the information transmitted over lossy channels.Comment: 5 pages, 4 figure

    Optimal quantum cloning of orbital angular momentum photon qubits via Hong-Ou-Mandel coalescence

    Full text link
    The orbital angular momentum (OAM) of light, associated with a helical structure of the wavefunction, has a great potential for quantum photonics, as it allows attaching a higher dimensional quantum space to each photon. Hitherto, however, the use of OAM has been hindered by its difficult manipulation. Here, exploiting the recently demonstrated spin-OAM information transfer tools, we report the first observation of the Hong-Ou-Mandel coalescence of two incoming photons having nonzero OAM into the same outgoing mode of a beam-splitter. The coalescence can be switched on and off by varying the input OAM state of the photons. Such effect has been then exploited to carry out the 1 \rightarrow 2 universal optimal quantum cloning of OAM-encoded qubits, using the symmetrization technique already developed for polarization. These results are finally shown to be scalable to quantum spaces of arbitrary dimension, even combining different degrees of freedom of the photons.Comment: 5 pages, 3 figure

    Purity of Gaussian states: measurement schemes and time-evolution in noisy channels

    Get PDF
    We present a systematic study of the purity for Gaussian states of single-mode continuous variable systems. We prove the connection of purity to observable quantities for these states, and show that the joint measurement of two conjugate quadratures is necessary and sufficient to determine the purity at any time. The statistical reliability and the range of applicability of the proposed measurement scheme is tested by means of Monte Carlo simulated experiments. We then consider the dynamics of purity in noisy channels. We derive an evolution equation for the purity of general Gaussian states both in thermal and squeezed thermal baths. We show that purity is maximized at any given time for an initial coherent state evolving in a thermal bath, or for an initial squeezed state evolving in a squeezed thermal bath whose asymptotic squeezing is orthogonal to that of the input state.Comment: 9 Pages, 6 Figures; minor errors correcte

    Scheme for the generation of an entangled four-photon W-state

    Full text link
    We present a scheme to produce an entangled four-photon W-state by using linear optical elements. The symmetrical setup of linear optical elements consists of four beam splitters, four polarization beam splitters and four mirrors. A photon EPR-pair and two single photons are required as the input modes. The projection on the W-state can be made by a four-photon coincidence measurement. Further, we show that by means of a horizontally oriented polarizer in front of one detector the W-state of three photons can be generated.Comment: titile is changed, to appear in PR
    corecore