14 research outputs found

    The early Miocene balaenid Morenocetus parvus from Patagonia (Argentina) and the evolution of right whales

    Get PDF
    Balaenidae (right and bowhead whales) are a key group in understanding baleen whale evolution, because they are the oldest surviving lineage of crown Mysticeti, with a fossil record that dates back ~20 million years. However, this record is mostly Pliocene and younger, with most of the Miocene history of the clade remaining practically unknown. The earliest recognized balaenid is the early Miocene Morenocetus parvus Cabrera, 1926 from Argentina. M. parvus was originally briefly described from two incomplete crania, a mandible and some cervical vertebrae collected from the lower Miocene Gaiman Formation of Patagonia. Since then it has not been revised, thus remaining a frequently cited yet enigmatic fossil cetacean with great potential for shedding light on the early history of crown Mysticeti. Here we provide a detailed morphological description of this taxon and revisit its phylogenetic position. The phylogenetic analysis recovered the middle Miocene Peripolocetus as the earliest diverging balaenid, and Morenocetus as the sister taxon of all other balaenids. The analysis of cranial and periotic morphology of Morenocetus suggest that some of the specialized morphological traits of modern balaenids were acquired by the early Miocene and have remained essentially unchanged up to the present. Throughout balaenid evolution, morphological changes in skull arching and ventral displacement of the orbits appear to be coupled and functionally linked to mitigating a reduction of the field of vision. The body length ofMorenocetus and other extinct balaenids was estimated and the evolution of body size in Balaenidae was reconstructed. Optimization of body length on our phylogeny of Balaenidae suggests that the primitive condition was a relatively small body length represented by Morenocetus, and that gigantism has been acquired independently at least twice (in Balaena mysticetus and Eubalaena spp.), with the earliest occurrence of this trait in the late Miocene-early Pliocene as represented by Eubalaena shinshuensis.Facultad de Ciencias Naturales y Muse

    Suction feeding preceded filtering in baleen whale evolution

    Get PDF
    The origin of baleen, the key adaptation of modern whales (Mysticeti), marks a profound yet poorly understood transition in vertebrate evolution, triggering the rise of the largest animals on Earth. Baleen is thought to have appeared in archaic tooth-bearing mysticetes during a transitional phase that combined raptorial feeding with incipient bulk filtering. Here we show that tooth wear in a new Late Oligocene mysticete belonging to the putatively transitional family Aetiocetidae is inconsistent with the presence of baleen, and instead indicative of suction feeding. Our findings suggest that baleen arose much closer to the origin of toothless mysticete whales than previously thought. In addition, they suggest an entirely new evolutionary scenario in which the transition from raptorial to baleen-assisted filter feeding was mediated by suction, thereby avoiding the problem of functional interference between teeth and the baleen rack

    The early Miocene balaenid Morenocetus parvus from Patagonia (Argentina) and the evolution of right whales

    Get PDF
    Balaenidae (right and bowhead whales) are a key group in understanding baleen whale evolution, because they are the oldest surviving lineage of crown Mysticeti, with a fossil record that dates back ~20 million years. However, this record is mostly Pliocene and younger, with most of the Miocene history of the clade remaining practically unknown. The earliest recognized balaenid is the early Miocene Morenocetus parvus Cabrera, 1926 from Argentina. M. parvus was originally briefly described from two incomplete crania, a mandible and some cervical vertebrae collected from the lower Miocene Gaiman Formation of Patagonia. Since then it has not been revised, thus remaining a frequently cited yet enigmatic fossil cetacean with great potential for shedding light on the early history of crown Mysticeti. Here we provide a detailed morphological description of this taxon and revisit its phylogenetic position. The phylogenetic analysis recovered the middle Miocene Peripolocetus as the earliest diverging balaenid, and Morenocetus as the sister taxon of all other balaenids. The analysis of cranial and periotic morphology of Morenocetus suggest that some of the specialized morphological traits of modern balaenids were acquired by the early Miocene and have remained essentially unchanged up to the present. Throughout balaenid evolution, morphological changes in skull arching and ventral displacement of the orbits appear to be coupled and functionally linked to mitigating a reduction of the field of vision. The body length ofMorenocetus and other extinct balaenids was estimated and the evolution of body size in Balaenidae was reconstructed. Optimization of body length on our phylogeny of Balaenidae suggests that the primitive condition was a relatively small body length represented by Morenocetus, and that gigantism has been acquired independently at least twice (in Balaena mysticetus and Eubalaena spp.), with the earliest occurrence of this trait in the late Miocene-early Pliocene as represented by Eubalaena shinshuensis.Facultad de Ciencias Naturales y Muse

    Clawed forelimbs allow northern seals to eat like their ancient ancestors

    Get PDF
    Funding for this project was provided by a Marie Skłodowska-Curie Global Postdoctoral Fellowship (656010/MYSTICETI) to F.G.M, by Marine Scotland to support the wild observations recorded by R.N.H., by an Australian Research Council Future Fellowship FT130100968 to A.R.E., and by an Australian Research Council Linkage Project LP150100403 to A.R.E. and E.M.G.F.Streamlined flippers are often considered the defining feature of seals and sea lions, whose very name ‘pinniped’ comes from the Latin pinna and pedis, meaning ‘fin-footed’. Yet not all pinniped limbs are alike. Whereas otariids (fur seals and sea lions) possess stiff streamlined forelimb flippers, phocine seals (northern true seals) have retained a webbed yet mobile paw bearing sharp claws. Here, we show that captive and wild phocines routinely use these claws to secure prey during processing, enabling seals to tear large fish by stretching them between their teeth and forelimbs. ‘Hold and tear’ processing relies on the primitive forelimb anatomy displayed by phocines, which is also found in the early fossil pinniped Enaliarctos. Phocine forelimb anatomy and behaviour therefore provide a glimpse into how the earliest seals likely fed, and indicate what behaviours may have assisted pinnipeds along their journey from terrestrial to aquatic feeding.Publisher PDFPeer reviewe

    Data from: The remarkable convergence of skull shape in crocodilians and toothed whales

    No full text
    The striking resemblance of long-snouted aquatic mammals and reptiles has long been considered an example of morphological convergence, yet the true cause of this similarity remains untested. We addressed this deficit through three-dimensional morphometric analysis of the full diversity of crocodilian and toothed whale (Odontoceti) skull shapes. Our focus on biomechanically important aspects of shape allowed us to overcome difficulties involved in comparing mammals and reptiles, which have fundamental differences in the number and position of skull bones. We examined whether diet, habitat and prey size correlated with skull shape using phylogenetically informed statistical procedures. Crocodilians and toothed whales have a similar range of skull shapes, varying from extremely short and broad to extremely elongate. This spectrum of shapes represented more of the total variation in our dataset than between phylogenetic groups. The most elongate species (river dolphins and gharials) are extremely convergent in skull shape, clustering outside of the range of the other taxa. Our results suggest the remarkable convergence between long-snouted river dolphins and gharials is driven by diet rather than physical factors intrinsic to riverine environments. Despite diverging approximately 288 million years ago, crocodilians and odontocetes have evolved a remarkably similar morphological solution to feeding on similar prey

    The extraordinary osteology and functional morphology of the limbs in Palorchestidae, a family of strange extinct marsupial giants

    No full text
    The Palorchestidae are a family of marsupial megafauna occurring across the eastern Australian continent from the late Oligocene through to their extinction in the Late Pleistocene. The group is known for their odd 'tapir-like' crania and distinctive clawed forelimbs, but their appendicular anatomy has never been formally described. We provide the first descriptions of the appendicular skeleton and body mass estimates for three palorchestid species, presenting newly-identified, and in some cases associated, material of mid-Miocene Propalorchestes, Plio-Pleistocene Palorchestes parvus and Pleistocene Palorchestes azael alongside detailed comparisons with extant and fossil vombatiform marsupials. We propose postcranial diagnostic characters at the family, genus and species level. Specialisation in the palorchestid appendicular skeleton evidently occurred much later than in the cranium and instead correlates with increasing body size within the lineage. We conclude that palorchestid forelimbs were highly specialised for the manipulation of their environment in the acquisition of browse, and that they may have adopted bipedal postures to feed. Our results indicate palorchestids were bigger than previously thought, with the largest species likely weighing over 1000 kg. Additionally, we show that P. azael exhibits some of the most unusual forelimb morphology of any mammal, with a uniquely fixed humeroulnar joint unlike any of their marsupial kin, living or extinct

    Anatomy and phylogeny of the large shark-toothed dolphin Phoberodon arctirostris Cabrera, 1926 (Cetacea: Odontoceti) from the early Miocene of Patagonia (Argentina)

    No full text
    The early Miocene of Patagonia (Argentina) provides one of the best-known records of odontocetes for an age interval with scarce fossils. Most of these taxa are historically old and briefly described, which has contributed, in part, to their controversial taxonomic position. The shark-toothed dolphin Phoberodon arctirostris was described almost 100 years ago and suggested as a member of Platanistoidea and Squalodontidae. However, it has not been analysed recently and has never been included in a phylogenetic analysis. Recent fieldwork in the early Miocene sediments in Patagonia yielded a new specimen referred to this species, allowing for its modern and detailed description and the first phylogenetic analyses. Analyses recovered P. arctirostris as a stem Odontoceti or an early-diverging platanistoid, more closely related to an unnamed Oligocene specimen from New Zealand and not in a clade with Squalodon calvertensis (i.e. Squalodontidae). The reconstructed body length of P. arctirostris indicates that it is one of the largest stem Odontoceti. Our results suggest that during the early Miocene of Patagonia, archaic odontocete forms (i.e. P. arctirostris) cohabited with archaic and more crownward platanistoids (i.e. Aondelphis talen and Notocetus vanbenedeni), helping to characterize the early Miocene cetacean communities of Patagonia.Fil: Viglino, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Geología y Paleontología; ArgentinaFil: Buono, Mónica Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Geología y Paleontología; ArgentinaFil: Fordyce, Robert Ewan. University Of Otago; CanadáFil: Cuitiño, José Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Geología y Paleontología; ArgentinaFil: Fitzgerald, Erich M.G.. Museums Victoria; Australi
    corecore