61 research outputs found

    The parasitoids of the African white rice borer, Maliarpha separatella Ragonot (Lepidoptera: Pyralidae)

    Get PDF
    A key is provided for the recognition of the hymenopterous parasitoids of the African white rice borer, Maliarpha separatella Ragonot, a pest of rice in Africa and Madagascar. Five species are described as new: Braconidae: Chelonus maudae Huddleston, Rhacanotus carinafus Polaszek; Ichneumonidae: Prisfomerus bullis Fitton, Prisfomerus caris Fitton, Venturia jordanae Fitton. The following synonyms are proposed: Goniozus indicus Muesebeck, G. natalensis Gordh and G. procerae Risbec are synonymized with Goniozus indicus Ashmead. Phanerotorna major Brues is synonymized with Phanerotoma saussurei Kohl. Lectotypes are designated for Goniozus procerae Risbec, Rhaconotus scirpophagae Wilkinson and Garouella ovicida Risbec. The known distributions, biologies and alternative hosts of each parasitoid are provided, and their use as biological control agents or components of integrated pest management programmes are discusse

    Construction status and prospects of the Hyper-Kamiokande project

    Get PDF
    The Hyper-Kamiokande project is a 258-kton Water Cherenkov together with a 1.3-MW high-intensity neutrino beam from the Japan Proton Accelerator Research Complex (J-PARC). The inner detector with 186-kton fiducial volume is viewed by 20-inch photomultiplier tubes (PMTs) and multi-PMT modules, and thereby provides state-of-the-art of Cherenkov ring reconstruction with thresholds in the range of few MeVs. The project is expected to lead to precision neutrino oscillation studies, especially neutrino CP violation, nucleon decay searches, and low energy neutrino astronomy. In 2020, the project was officially approved and construction of the far detector was started at Kamioka. In 2021, the excavation of the access tunnel and initial mass production of the newly developed 20-inch PMTs was also started. In this paper, we present a basic overview of the project and the latest updates on the construction status of the project, which is expected to commence operation in 2027

    Prospects for neutrino astrophysics with Hyper-Kamiokande

    Get PDF
    Hyper-Kamiokande is a multi-purpose next generation neutrino experiment. The detector is a two-layered cylindrical shape ultra-pure water tank, with its height of 64 m and diameter of 71 m. The inner detector will be surrounded by tens of thousands of twenty-inch photosensors and multi-PMT modules to detect water Cherenkov radiation due to the charged particles and provide our fiducial volume of 188 kt. This detection technique is established by Kamiokande and Super-Kamiokande. As the successor of these experiments, Hyper-K will be located deep underground, 600 m below Mt. Tochibora at Kamioka in Japan to reduce cosmic-ray backgrounds. Besides our physics program with accelerator neutrino, atmospheric neutrino and proton decay, neutrino astrophysics is an important research topic for Hyper-K. With its fruitful physics research programs, Hyper-K will play a critical role in the next neutrino physics frontier. It will also provide important information via astrophysical neutrino measurements, i.e., solar neutrino, supernova burst neutrinos and supernova relic neutrino. Here, we will discuss the physics potential of Hyper-K neutrino astrophysics

    The dynamic influence of genetic variation on the susceptibility of sheep to gastrointestinal nematode infection

    No full text
    The interaction between sheep and the nematode Teladorsagia circumcincta is one of the best understood of all host–parasite interactions. Following infection, there is considerable variation among lambs in the number of nematode eggs produced, the number of early fourth-stage larvae and the number of adult worms in the mucosa. These traits have a high variance to mean ratio (i.e. they are overdispersed or aggregated among hosts), they are skewed and approximately negative binomially distributed. The sources of overdispersion are differences among lambs in the ingestion of infective larvae and the immune response. Both forces can produce aggregation but their relative importance is unknown. The key components of variation can be identified by variance analysis. The sum of the average effects of polymorphic genes is known as additive genetic variation and this increases essentially from zero at one month of age to quite high values at six months of age. The major mechanism underlying genetic variation appears to be the differences among individuals in immune responses. Two of the major sources of variation in immune responses are differences in antigen recognition and differences in the type of cytokines produced. Genes that influence both these sources of variation are associated with differences in resistance to nematode infection. Therefore, much of the heterogeneity among animals in parasite transmission appears to be due to genetic variation in immune responsiveness
    • …
    corecore