232 research outputs found

    Phylogenomics: Gene Duplication, Unrecognized Paralogy and Outgroup Choice

    Get PDF
    Comparative genomics has revealed the ubiquity of gene and genome duplication and subsequent gene loss. In the case of gene duplication and subsequent loss, gene trees can differ from species trees, thus frequent gene duplication poses a challenge for reconstruction of species relationships. Here I address the case of multi-gene sets of putative orthologs that include some unrecognized paralogs due to ancestral gene duplication, and ask how outgroups should best be chosen to reduce the degree of non-species tree (NST) signal. Consideration of expected internal branch lengths supports several conclusions: (i) when a single outgroup is used, the degree of NST signal arising from gene duplication is either independent of outgroup choice, or is minimized by use of a maximally closely related post-duplication (MCRPD) outgroup; (ii) when two outgroups are used, NST signal is minimized by using one MCRPD outgroup, while the position of the second outgroup is of lesser importance; and (iii) when two outgroups are used, the ability to detect gene trees that are inconsistent with known aspects of the species tree is maximized by use of one MCRPD, and is either independent of the position of the second outgroup, or is maximized for a more distantly related second outgroup. Overall, these results generalize the utility of closely-related outgroups for phylogenetic analysis

    Recommendations for a core outcome set for measuring standing balance in adult populations: a consensus-based approach

    Get PDF
    Standing balance is imperative for mobility and avoiding falls. Use of an excessive number of standing balance measures has limited the synthesis of balance intervention data and hampered consistent clinical practice.To develop recommendations for a core outcome set (COS) of standing balance measures for research and practice among adults.A combination of scoping reviews, literature appraisal, anonymous voting and face-to-face meetings with fourteen invited experts from a range of disciplines with international recognition in balance measurement and falls prevention. Consensus was sought over three rounds using pre-established criteria.The scoping review identified 56 existing standing balance measures validated in adult populations with evidence of use in the past five years, and these were considered for inclusion in the COS.Fifteen measures were excluded after the first round of scoring and a further 36 after round two. Five measures were considered in round three. Two measures reached consensus for recommendation, and the expert panel recommended that at a minimum, either the Berg Balance Scale or Mini Balance Evaluation Systems Test be used when measuring standing balance in adult populations.Inclusion of two measures in the COS may increase the feasibility of potential uptake, but poses challenges for data synthesis. Adoption of the standing balance COS does not constitute a comprehensive balance assessment for any population, and users should include additional validated measures as appropriate.The absence of a gold standard for measuring standing balance has contributed to the proliferation of outcome measures. These recommendations represent an important first step towards greater standardization in the assessment and measurement of this critical skill and will inform clinical research and practice internationally

    Confronting chemobrain: an in-depth look at survivors’ reports of impact on work, social networks, and health care response

    Get PDF
    Mild cognitive impairment following chemotherapy is one of the most commonly reported post treatment symptoms by breast cancer survivors. This deterioration in cognitive function, commonly referred to as “chemobrain” or “chemofog,” was largely unacknowledged by the medical community until recent years. Although chemobrain has now become the subject of more vigorous exploration, little is known about this specific phenomenon’s psychosocial impact on breast cancer survivors. This research documents in-depth the effects that cognitive impairment has on women’s personal and professional lives, and our data suggest that greater attention needs to be focused on this arena of survivorship. The results are based on an in-depth qualitative study of 74 white and African American breast cancer survivors in California who experience post-treatment side effects. The data reported herein were obtained through the use of focus groups and in-depth interviews. Our data indicate that cognitive impairment can be problematic for survivors, with many asserting that it is their most troublesome post treatment symptom. Survivors report diminished quality of life and daily functioning as a result of chemobrain. Respondents detail a range of coping strategies that they are forced to employ in order to manage their social and professional lives. Chemobrain significantly impairs a proportion of cancer survivors, at great cost to them economically, emotionally, and interpersonally. This suggests that more research needs to be conducted on the psychosocial ramifications of post treatment symptoms in order to inform the efforts of the medical and mental health communities as well as the support networks of survivors. A better and broader understanding of the effects of cognitive impairment both in the medical community and among lay people could pave the way for improved social and psychological services for this population

    Rec-DCM-Eigen: Reconstructing a Less Parsimonious but More Accurate Tree in Shorter Time

    Get PDF
    Maximum parsimony (MP) methods aim to reconstruct the phylogeny of extant species by finding the most parsimonious evolutionary scenario using the species' genome data. MP methods are considered to be accurate, but they are also computationally expensive especially for a large number of species. Several disk-covering methods (DCMs), which decompose the input species to multiple overlapping subgroups (or disks), have been proposed to solve the problem in a divide-and-conquer way

    A Rapid, Strong, and Convergent Genetic Response to Urban Habitat Fragmentation in Four Divergent and Widespread Vertebrates

    Get PDF
    Urbanization is a major cause of habitat fragmentation worldwide. Ecological and conservation theory predicts many potential impacts of habitat fragmentation on natural populations, including genetic impacts. Habitat fragmentation by urbanization causes populations of animals and plants to be isolated in patches of suitable habitat that are surrounded by non-native vegetation or severely altered vegetation, asphalt, concrete, and human structures. This can lead to genetic divergence between patches and in turn to decreased genetic diversity within patches through genetic drift and inbreeding.We examined population genetic patterns using microsatellites in four common vertebrate species, three lizards and one bird, in highly fragmented urban southern California. Despite significant phylogenetic, ecological, and mobility differences between these species, all four showed similar and significant reductions in gene flow over relatively short geographic and temporal scales. For all four species, the greatest genetic divergence was found where development was oldest and most intensive. All four animals also showed significant reduction in gene flow associated with intervening roads and freeways, the degree of patch isolation, and the time since isolation.Despite wide acceptance of the idea in principle, evidence of significant population genetic changes associated with fragmentation at small spatial and temporal scales has been rare, even in smaller terrestrial vertebrates, and especially for birds. Given the striking pattern of similar and rapid effects across four common and widespread species, including a volant bird, intense urbanization may represent the most severe form of fragmentation, with minimal effective movement through the urban matrix

    Age related decline in female lar gibbon great call performance suggests that call features correlate with physical condition

    Get PDF
    Background: White-handed gibbons (Hylobates lar) are small Asian apes known for living in stable territories and producing loud, elaborate vocalizations (songs), often in well-coordinated male/female duets. The female great call, the most conspicuous phrase of the repertoire, has been hypothesized to function in intra-sexual territorial defense. We therefore predicted that characteristics of the great call would correlate with a caller’s physical condition, and thus might honestly reflect resource holding potential (RHP). Because measurement of RHP is virtually impossible for wild animals, we used age as a proxy, hypothesizing that great call climaxes are difficult to produce and maintain over time, and that older adults will therefore perform lower quality great calls than young adults. To test this we analyzed the great call climaxes of 15 wild lar gibbon females at Khao Yai National Park, Thailand and 2 captive females at Leo Conservation Center, Greenwich, CT. Results: Findings show that call climaxes correlate with female age, as young animals (n = 8, mean age: 12.9 years) produced climaxes with a higher frequency range (delta F0), maximum F0 frequency and duty cycle than old animals (n = 9, mean age: 29.6 years). A permuted discriminant function analysis also correctly classified calls by age group. During long song bouts the maximum F0 frequency of great call climaxes’ also decreased. Additional data support the hypothesis that short high notes, associated with rapid inhalation as an individual catches its breath, reflect increased caller effort. Older females produced more high notes than younger females, but the difference only approached statistical significance, suggesting that calling effort may be similar across different ages. Finally, for the first time in this species, we measured peak intensity of calls in captive females. They were capable of producing climaxes in excess of 100 dB at close range (2.7 m). Conclusions: Age and within-bout differences in the lar gibbon great call climax suggest that call features correlate with physical condition and thus the call may have evolved as an honest signal in the context of intra-sexual territorial defense and possibly also in male mate choice via sexual selection, although further testing of these hypotheses is necessary. Results: Findings show that call climaxes correlate with female age, as young animals (n = 8, mean age: 12.9 years) produced climaxes with a higher frequency range (delta F0), maximum F0 frequency and duty cycle than old animals (n = 9, mean age: 29.6 years). A permuted discriminant function analysis also correctly classified calls by age group. During long song bouts the maximum F0 frequency of great call climaxes’ also decreased. Additional data support the hypothesis that short high notes, associated with rapid inhalation as an individual catches its breath, reflect increased caller effort. Older females produced more high notes than younger females, but the difference only approached statistical significance, suggesting that calling effort may be similar across different ages. Finally, for the first time in this species, we measured peak intensity of calls in captive females. They were capable of producing climaxes in excess of 100 dB at close range (2.7 m). Conclusions: Age and within-bout differences in the lar gibbon great call climax suggest that call features correlate with physical condition and thus the call may have evolved as an honest signal in the context of intra-sexual territorial defense and possibly also in male mate choice via sexual selection, although further testing of these hypotheses is necessary

    Conversion events in gene clusters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene clusters containing multiple similar genomic regions in close proximity are of great interest for biomedical studies because of their associations with inherited diseases. However, such regions are difficult to analyze due to their structural complexity and their complicated evolutionary histories, reflecting a variety of large-scale mutational events. In particular, conversion events can mislead inferences about the relationships among these regions, as traced by traditional methods such as construction of phylogenetic trees or multi-species alignments.</p> <p>Results</p> <p>To correct the distorted information generated by such methods, we have developed an automated pipeline called CHAP (Cluster History Analysis Package) for detecting conversion events. We used this pipeline to analyze the conversion events that affected two well-studied gene clusters (α-globin and β-globin) and three gene clusters for which comparative sequence data were generated from seven primate species: CCL (chemokine ligand), IFN (interferon), and CYP2abf (part of cytochrome P450 family 2). CHAP is freely available at <url>http://www.bx.psu.edu/miller_lab</url>.</p> <p>Conclusions</p> <p>These studies reveal the value of characterizing conversion events in the context of studying gene clusters in complex genomes.</p

    Expression of emotional arousal in two different piglet call types

    Get PDF
    Humans as well as many animal species reveal their emotional state in their voice. Vocal features show strikingly similar correlation patterns with emotional states across mammalian species, suggesting that the vocal expression of emotion follows highly conserved signalling rules. To fully understand the principles of emotional signalling in mammals it is, however, necessary to also account for any inconsistencies in the way that they are acoustically encoded. Here we investigate whether the expression of emotions differs between call types produced by the same species. We compare the acoustic structure of two common piglet calls—the scream (a distress call) and the grunt (a contact call)—across three levels of arousal in a negative situation. We find that while the central frequency of calls increases with arousal in both call types, the amplitude and tonal quality (harmonic-to-noise ratio) show contrasting patterns: as arousal increased, the intensity also increased in screams, but not in grunts, while the harmonicity increased in screams but decreased in grunts. Our results suggest that the expression of arousal depends on the function and acoustic specificity of the call type. The fact that more vocal features varied with arousal in scream calls than in grunts is consistent with the idea that distress calls have evolved to convey information about emotional arousal
    corecore