702 research outputs found

    An Aerial Gamma Ray Survey of Hunterston Nuclear Power Station in 14-15 April and 4 May 1994

    Get PDF

    Superconducting materials: What the record tells us

    Full text link

    An Aerial Gamma Ray Survey of Torness Nuclear Power Station on 27-30 March 1994

    Get PDF
    <p>An aerial gamma-ray survey of the environment of Torness Nuclear Power Station was commissioned by Scottish Nuclear Limited, and conducted by the Scottish Universities Research and Reactor Centre. The area surveyed encloses a 31km square, with Torness Nuclear Power Station at the centre, flown with a line spacing of 500m. A secondary area, in closer proximity to the nuclear site, was flown with 250m spacing.</p> <p>Over 6000 gamma ray spectra were recorded with a high volume spectrometer operated from a helicopter over a three day period in March 1994. Spectral data were recorded together with satellite navigation (GPS) and radar altimetry data. The results provide a comprehensive record of the radiation environment around Torness and have been used to map the distribution of natural and man-made radionuclides, forming a baseline to enable future environmental changes may be assessed.</p> <p>The natural radionuclides 40K, 214Bi and 208Tl are highly correlated with each other and show a distribution which reflects both the underlying geological and geomorphological features of the area. The main structural boundaries of the Dunbar-Gifford and Lammermuir faults can be partly discerned in the maps, as can some igneous intrusions. Areas with peat or alluvium cover appear as negative features in the radiometric maps.</p> <p>Radiocaesium 137Cs levels range from below 4 kBq m-2 to over 20 kBq m-2. Upland areas near Coldingham Common, Black Castle Hill and Dunbar Common show the highest values, similar in deposition pattern and level to Chernobyl activity observed in the West of Scotland and elsewhere. Published national maps derived from meteorological and ground sampling data predicted much lower levels for these locations. However core samples taken after the survey have confirmed the presence of the activity, and the attribution to Chernobyl. This finding demonstrates both the effectiveness of the method for rapid location of radioactive deposition, and the need for baseline studies to determine present levels. Count rates from a spectral window corresponding to 60Co were also mapped. The results are close to detection limits and show a slight correlation with natural sources. Therefore they are more probably due to residuals remaining after separation of spectral interferences than to low level 60Co contamination.</p> <p>Gamma ray dose rates range from approximately 0.1 to 0.6 mGy a-1 with a mean value of 0.34 mGy a-1, and are derived mainly from natural sources. Ground level measurements were taken at nine district monitoring points within the area using a 3x3" NaI spectrometer and a survey meter (Series 6/80) used routinely by SNL. Both ground based data sets were in good agreement with each other and with the aerial survey after accounting for instrumental and cosmic ray background contributions.</p> <p>There is no evidence that Torness Power Station has affected the surrounding radiation environment, within the operational and sensitivity limits of the aerial survey.</p> <p>The longer term impact of the site can be assessed by future surveys. Moreover under emergency conditions it would be possible to utilise this method for rapid mapping of the area on a timescale which cannot be matched using alternative approaches. </p&gt

    ARPES Study of X-Point Band Overlaps in LaB6_6 and SmB6_6 - Contrast to SrB6_6 and EuB6_6

    Full text link
    In contrast to our recent finding of an X-point band gap in divalent hexaborides, we report here that angle resolved photoemission spectroscopy (ARPES) data shows that the gap is absent for trivalent LaB6_6 and is absent or nearly so for mixed valent SmB6_6. This finding demonstrates a nontrivial evolution of the band structure from divalent to trivalent hexaborides.Comment: submitted to SCES '0

    Point-contact Andreev reflection spectroscopy of heavy-fermion-metal/superconductor junctions

    Full text link
    Our previous point-contact Andreev reflection studies of the heavy-fermion superconductor CeCoIn5_5 using Au tips have shown two clear features: reduced Andreev signal and asymmetric background conductance [1]. To explore their physical origins, we have extended our measurements to point-contact junctions between single crystalline heavy-fermion metals and superconducting Nb tips. Differential conductance spectra are taken on junctions with three heavy-fermion metals, CeCoIn5_5, CeRhIn5_5, and YbAl3_3, each with different electron mass. In contrast with Au/CeCoIn5_5 junctions, Andreev signal is not reduced and no dependence on effective mass is observed. A possible explanation based on a two-fluid picture for heavy fermions is proposed. [1] W. K. Park et al., Phys. Rev. B 72 052509 (2005); W. K. Park et al., Proc. SPIE-Int. Soc. Opt. Eng. 5932 59321Q (2005); W. K. Park et al., Physica C (in press) (cond-mat/0606535).Comment: 2 pages, 2 figures, submitted to the SCES conference, Houston, Texas, USA, May 13-18, 200

    Pseudogap Formation in the Symmetric Anderson Lattice Model

    Full text link
    We present self-consistent calculations for the self-energy and magnetic susceptibility of the 2D and 3D symmetric Anderson lattice Hamiltonian, in the fluctuation exchange approximation. At high temperatures, strong f-electron scattering leads to broad quasiparticle spectral functions, a reduced quasiparticle band gap, and a metallic density of states. As the temperature is lowered, the spectral functions narrow and a pseudogap forms at the characteristic temperature TxT_x at which the width of the quasiparticle spectral function at the gap edge is comparable to the renormalized activation energy. For T<<TxT << T_x , the pseudogap is approximately equal to the hybridization gap in the bare band structure. The opening of the pseudogap is clearly apparent in both the spin susceptibility and the compressibility.Comment: RevTeX - 14 pages and 7 figures (available on request), NRL-JA-6690-94-002

    Quasi particle interference of heavy fermions in resonant x ray scattering

    Get PDF
    Resonant x ray scattering RXS has recently become an increasingly important tool for the study of ordering phenomena in correlated electron systems. Yet, the interpretation of RXS experiments remains theoretically challenging because of the complexity of the RXS cross section. Central to this debate is the recent proposal that impurity induced Friedel oscillations, akin to quasi particle interference signals observed with a scanning tunneling microscope STM , can lead to scattering peaks in RXS experiments. The possibility that quasi particle properties can be probed in RXSmeasurements opens up a new avenue to study the bulk band structure ofmaterials with the orbital and element selectivity provided by RXS. We test these ideas by combining RXS and STM measurements of the heavy fermion compound CeMIn5 M Co, Rh . Temperature and doping dependent RXSmeasurements at the Ce M4 edge show abroad scattering enhancement that correlateswith the appearance of heavy f electron bands in these compounds. The scattering enhancement is consistentwith themeasured quasi particle interference signal in the STMmeasurements, indicating that the quasi particle interference can be probed through the momentum distribution of RXS signals. Overall, our experiments demonstrate new opportunities for studies of correlated electronic systems using the RXS techniqu
    • …
    corecore