249 research outputs found

    Dynamic nonlinear (cubic) susceptibility in quantum Ising spin glass

    Full text link
    Dynamic nonlinear (cubic) susceptibility in quantum d-dimensional Ising spin glass with short-range interactions is investigated on the basis of quantum droplet model and quantum-mechanical nonlinear response theory. Nonlinear response depends on the tunneling rate for a droplet which regulates the strength of quantum fluctuations. It shows a strong dependence on the distribution of droplet free energies and on the droplet length scale average. Comparison with recent experiments on quantum spin glasses like disordered dipolar quantum Ising magnet is discussed.Comment: 15 pages, 3 figure

    Quantum vortex fluctuations in cuprate superconductors

    Full text link
    We study the effects of quantum vortex fluctuations in two-dimensional superconductors using a dual theory of vortices, and investigate the relevance to underdoped cuprates where the superconductor-insulator transition (SIT) is possibly driven by quantum vortex proliferation. We find that a broad enough phase fluctuation regime may exist for experimental observation of the quantum vortex fluctuations near SIT in underdoped cuprates. We propose that this scenario can be tested via pair-tunneling experiments which measure the characteristic resonances in the zero-temperature pair-field susceptibility in the vortex-proliferated insulating phase.Comment: RevTex 5 pages, 2 eps figures; expanded; to appear in Phys. Rev.

    Tensionless structure of glassy phase

    Full text link
    We study a class of homogeneous finite-dimensional Ising models which were recently shown to exhibit glassy properties. Monte Carlo simulations of a particular three-dimensional model in this class show that the glassy phase obtained under slow cooling is dominated by large scale excitations whose energy ElE_l scales with their size ll as EllΘE_l\sim l^{\Theta} with Θ1.33(5)\Theta\sim 1.33(5). Simulations suggest that in another model of this class, namely the four-spin model, energy is concentrated mainly in linear defects making also in this case domain walls tensionless. Two-dimensinal variants of these models are trivial and energy of excitations scales with the exponent Θ=1.05(5)\Theta=1.05(5).Comment: 5 page

    Phase Transitions in One-Dimensional Truncated Bosonic Hubbard Model and Its Spin-1 Analog

    Full text link
    We study one-dimensional truncated (no more than 2 particles on a site) bosonic Hubbard model in both repulsive and attractive regimes by exact diagonalization and exact worldline Monte Carlo simulation. In the commensurate case (one particle per site) we demonstrate that the point of Mott-insulator -- superfluid transition, (U/t)c=0.50±0.05(U/t)_c=0.50\pm 0.05, is remarkably far from that of the full model. In the attractive region we observe the phase transition from one-particle superfluid to two-particle one. The paring gap demonstrates a linear behavior in the vicinity of the critical point. The critical state features marginal response to the gauge phase. We argue that the two-particle superfluid is a macroscopic analog of a peculiar phase observed earlier in a spin-1 model with axial anisotropy.Comment: Revtex, 5 pages, 9 figures. Submitted to Phys. Rev.

    Velocity-force characteristics of an interface driven through a periodic potential

    Full text link
    We study the creep dynamics of a two-dimensional interface driven through a periodic potential using dynamical renormalization group methods. We find that the nature of weak-drive transport depends qualitatively on whether the temperature TT is above or below the equilibrium roughening transition temperature TcT_c. Above TcT_c, the velocity-force characteristics is Ohmic, with linear mobility exhibiting a jump discontinuity across the transition. For TTcT \le T_c, the transport is highly nonlinear, exhibiting an interesting crossover in temperature and weak external force FF. For intermediate drive, F>FF>F_*, we find near TcT_c^{-} a power-law velocity-force characteristics v(F)Fσv(F)\sim F^\sigma, with σ1t~\sigma-1\propto \tilde{t}, and well-below TcT_c, v(F)e(F/F)2t~v(F)\sim e^{-(F_*/F)^{2\tilde{t}}}, with t~=(1T/Tc)\tilde{t}=(1-T/T_c). In the limit of vanishing drive (FFF\ll F_*) the velocity-force characteristics crosses over to v(F)e(F0/F)v(F)\sim e^{-(F_0/F)}, and is controlled by soliton nucleation.Comment: 18 pages, submitted to Phys. Rev.

    Ultracold Atoms in 1D Optical Lattices: Mean Field, Quantum Field, Computation, and Soliton Formation

    Full text link
    In this work, we highlight the correspondence between two descriptions of a system of ultracold bosons in a one-dimensional optical lattice potential: (1) the discrete nonlinear Schr\"{o}dinger equation, a discrete mean-field theory, and (2) the Bose-Hubbard Hamiltonian, a discrete quantum-field theory. The former is recovered from the latter in the limit of a product of local coherent states. Using a truncated form of these mean-field states as initial conditions, we build quantum analogs to the dark soliton solutions of the discrete nonlinear Schr\"{o}dinger equation and investigate their dynamical properties in the Bose-Hubbard Hamiltonian. We also discuss specifics of the numerical methods employed for both our mean-field and quantum calculations, where in the latter case we use the time-evolving block decimation algorithm due to Vidal.Comment: 14 pages, 2 figures; to appear in Journal of Mathematics and Computers in Simulatio

    The one-dimensional Bose-Hubbard Model with nearest-neighbor interaction

    Full text link
    We study the one-dimensional Bose-Hubbard model using the Density-Matrix Renormalization Group (DMRG).For the cases of on-site interactions and additional nearest-neighbor interactions the phase boundaries of the Mott-insulators and charge density wave phases are determined. We find a direct phase transition between the charge density wave phase and the superfluid phase, and no supersolid or normal phases. In the presence of nearest-neighbor interaction the charge density wave phase is completely surrounded by a region in which the effective interactions in the superfluid phase are repulsive. It is known from Luttinger liquid theory that a single impurity causes the system to be insulating if the effective interactions are repulsive, and that an even bigger region of the superfluid phase is driven into a Bose-glass phase by any finite quenched disorder. We determine the boundaries of both regions in the phase diagram. The ac-conductivity in the superfluid phase in the attractive and the repulsive region is calculated, and a big superfluid stiffness is found in the attractive as well as the repulsive region.Comment: 19 pages, 30 figure

    Slow dynamics and aging in spin-glasses

    Full text link
    Contribution presented by Eric Vincent in the Conference `Complex Behaviour of Glassy Systems', Sitges, Barcelona, Spain, June, 1996. It contains a review of the experimental results on Slow dynamics and aging in spin-glasses. It also presents their comparison with recent theoretical developments in the description of the out of equilibrium dynamics of disordered systems; namely, the trap model and the mean-field theory.Comment: 35 pages, 12 figures, macro lmamult.sty (included

    Using the Wigner-Ibach Surmise to Analyze Terrace-Width Distributions: History, User's Guide, and Advances

    Full text link
    A history is given of the applications of the simple expression generalized from the surmise by Wigner and also by Ibach to extract the strength of the interaction between steps on a vicinal surface, via the terrace width distribution (TWD). A concise guide for use with experiments and a summary of some recent extensions are provided.Comment: 11 pages, 4 figures, reformatted (with revtex) version of refereed paper for special issue of Applied Physics A entitled "From Surface Science to Device Physics", in honor of the retirements of Prof. H. Ibach and Prof. H. L\"ut

    Phosphorothioate antisense oligonucleotides induce the formation of nuclear bodies

    Get PDF
    Antisense oligonucleotides are powerful tools for the in vivo regulation of gene expression. We have characterized the intracellular distribution of fluorescently tagged phosphorothioate oligodeoxynucleotides (PS-ONs) at high resolution under conditions in which PS-ONs have the potential to display antisense activity. Under these conditions PS-ONs predominantly localized to the cell nucleus where they accumulated in 20-30 bright spherical foci designated phosphorothioate bodies (PS bodies), which were set against a diffuse nucleoplasmic population excluding nucleoli. PS bodies are nuclear structures that formed in cells after PS-ON delivery by transfection agents or microinjection but were observed irrespectively of antisense activity or sequence. Ultrastructurally, PS bodies corresponded to electron-dense structures of 150-300 nm diameter and resembled nuclear bodies that were found with lower frequency in cells lacking PS-ONs. The environment of a living cell was required for the de novo formation of PS bodies, which occurred within minutes after the introduction of PS-ONs. PS bodies were stable entities that underwent noticeable reorganization only during mitosis. Upon exit from mitosis, PS bodies were assembled de novo from diffuse PS-ON pools in the daughter nuclei. In situ fractionation demonstrated an association of PS-ONs with the nuclear matrix. Taken together, our data provide evidence for the formation of a nuclear body in cells after introduction of phosphorothioate oligodeoxynucleotides
    corecore