23 research outputs found
Siderite concretions from nonmarine shales (Westphalian A) of the Pennines, England: Controls on their growth and composition
Back-scattered electron microscopy has been used to examine the microstructure of nonmarine-shale-hosted siderite concretions. The concretions are composed of 50-100 mu m, zoned crystallites, which exhibit no noticeable center-to-edge variation within any individual concretion. This indicates that siderite crystallites nucleated at virtually the same time across the entire concretion and that the concretions did not grow by radial addition of siderite layers around a central nucleus. Further siderite precipitation took place by crystal growth onto the nuclei. The total proportion of siderite in any part of the concretion bears no simple relationship to the porosity of the enclosing shale at the time of precipitation, and growth by passive precipitation in pore space is unlikely. Integration of microprobe data with bulk mineral-chemical and stable-isotope data suggests that the siderite crystallites are composed of an Fe-Mn-rich end member with a delta(13)C value of similar to +10 parts per thousand and a Mg-Ca-rich end member with a delta(13)C value of similar to 0 parts per thousand to -5 parts per thousand. The mineral-chemical and stable-isotope compositions of these concretions resulted from microbially mediated processes operating close (< 10 m) to the sediment-water interface, during methanogenesis. Methanogenesis can generate low-delta(13)C as well as high-delta(13)C carbonate cements, hence deep-burial diagenetic reactions, such as decarboxylation of organic matter, need not be invoked to generate solutes for siderite precipitation
On the numerical and mesh-dependent parameters in a computationally enhanced phase-field fracture model coupled with a novel mesh refinement strategy
The phase-field method has been proven as a robust and computationally efficient approach to model the propagation of fractures in brittle solids. However, the performance of this technique in the context of finite element method can be questioned due to restrictions in the mesh structure and the element size to capture the fracture as a diffusive damaged region. This study is dedicated to developing a methodology for finding an appropriate length-scale parameter to model the fracturing process in a way that matches the physical character of failure in materials. The fracture process zone is chosen as the key feature in this study to propose relationships for estimating the length-scale parameter based on the tensile strength and cracking properties, and the robustness of the method is verified using experimental data. To employ the phase-field method in modelling large-scale domains and complex geometries, a novel mesh refinement strategy is developed to increase the computational efficiency based on predicting a corrected tensile strength limit depending on the element size to capture the crack-tip effectively. The proposed mesh refinement strategy reduces the computational effort significantly. Reliability and robustness of the developed relationships are successfully examined by simulating benchmark cases and comparisons with physically measured data
Rates of carbonate cementation associated with sulphate reduction in DSDP/ODP sediments: implications for the formation of concretions
DSDP/ODP porewater profiles in organic carbon-bearing (<5% org. C) sediments commonly show decreases in Ca2+ concentrations and increases in alkalinity over depths where sulphate is being removed by microbial reduction. These Ca2+ depletion profiles represent the combined effect of diffusion, advection and reaction (addition by ion exchange and removal by precipitation mainly as CaCO3 and/or dolomite). A diagenetic model has been used to estimate the rate constant (k) for Ca2+ removal by precipitation during sulphate depletion over depths of 15-150 m, assuming first order kinetics. The rate constants for Ca2+ removal range from 10(-14) to 10(-11) s(-1) in 19 DSDP/ODP sediments, which span a range of bottom water temperatures (0-10 degreesC), lithologies (calcareous to clastic) and sedimentation rates (0.001-0.4 cm year(-1)). Values of k correlate with sedimentation rate (omega) such that log k=1.16 log omega-10.3, indicating that faster rates of Ca2+ removal occur at higher sedimentation rates where there are also higher degrees of saturation with respect to CaCO3 and dolomite. Depth-integrated masses of Ca2+ removed (<100 mumol cm(-2)) during sulphate depletion over these depth ranges are equivalent to a dispersed phase of approximately 1.5 wt.% CaCO3 or 3 wt.% dolomite in a compacted sediment. The complete occlusion of sediment porosity observed in concretions with isotopic signatures suggesting carbonate sourced from sulphate reduction therefore requires more time (a depositional hiatus), more rapid sulphate reduction (possibly by anaerobic methane oxidation) and/or the continued transport of isotopically light carbonate to the concretion site after sulphate reduction has ceased
Nernst Effect and Anomalous Transport in Cuprates: A Preformed-Pair Alternative to the Vortex Scenario
We address those puzzling experiments in underdoped high
superconductors which have been associated with normal state "vortices" and
show these data can be understood as deriving from preformed pairs with onset
temperature . For uncorrelated bosons in small magnetic fields, and
arbitrary , we present the exact contribution to \textit{all}
transport coefficients. In the overdoped regime our results reduce to those of
standard fluctuation theories (). Semi-quantitative agreement
with Nernst, ac conductivity and diamagnetic measurements is quite reasonable.Comment: 9 pages, 4 figures; Title, abstract and contents modified, new
references added, figures changed, one more figure added; to be published on
PR
The first-order phase transition between dimerized-antiferromagnetic and uniform-antiferromagnetic phases in Cu_(1-x)M_xGeO_3
We have performed detailed magnetic susceptibility measurements as well as
synchrotron x-ray diffraction studies to determine the temperature vs
concentration ( - ) phase diagram of CuMgGeO. We
observe clear double peaks in the magnetic susceptibility implying two
antiferromagnetic (AF) transition temperatures in samples with Mg
concentrations in the range 0.0237 0.0271. We also observe a
drastic change in the inverse correlation length in this concentration range by
x-ray diffraction. The drastic change of the AF transition temperature as well
as the disappearance of the spin-Peierls (SP) phase have been clarified; these
results are consistent with a first-order phase transition between dimerized AF
(D-AF) and uniform AF (U-AF) phases as reported by T. Masuda {\it et al.}
\lbrack Phys. Rev. Lett. {\bf 80}, 4566 (1998)\rbrack. The - phase
diagram of CuZnGeO is similar to that of
CuMgGeO, which suggests that the present phase transition
is universal for CuGeO.Comment: 7 pages, 5 figures. submitted to PR
Nanoindentation of Horn River Basin Shales: The Micromechanical Contrast Between Overburden and Reservoir Formations
We present a micromechanical characterization of shales from the Horn River Basin, NW Canada. The shales have contrasting mineralogy and microstructures and play different geomechanical roles in the field: the sample set covers an unconventional gas reservoir and the overburden unit that serves as the upper fracture barrier. Composition and texture were characterized using X-ray diffraction, mercury injection porosimetry, and scanning electron microscopy (SEM). Grid nanoindentation testing was used to obtain the mechanical response of the dominant phases in the shale microstructure. Samples were indented parallel and perpendicular to the bedding plane to assess mechanical anisotropy. Chemical analysis of the grids with SEM-EDS (energy dispersive X-ray spectroscopy) was undertaken and the coupled chemo-mechanical data was used in a statistical clustering procedure (Gaussian mixture model) to reveal the mechanical properties of each phase. The results show that the overburden consists of a soft clay matrix with highly anisotropic elastic stiffness, and stiffer but effectively isotropic inclusions of quartz and feldspar; the significant anisotropy of the overburden has been previously observed on a much larger scale using microseismic data. Creep displacement is concentrated in the clay matrix, which is the key phase for fracture barrier and seal applications. The reservoir units are harder and have more isotropic mechanical responses, primarily due to their lower clay content. Despite varied compositions and microstructures, the major phases of these shales (clay/organic matrix, quartz/feldspar, dolomite, and calcite) have unique mechanical signatures, which will aid identification in future micromechanical characterizations and facilitate their use in upscaling schemes
Key controls on the hydraulic properties of fault rocks in carbonates
A significant knowledge gap exists when analysing and predicting the hydraulic behaviour of faults within carbonate reservoirs. To improve this, a large database of carbonate fault rock properties has been collected from 42 exposed faults, from seven countries. Faults analysed cut a range of lithofacies, tectonic histories, burial depths and displacements. Porosity and permeability measurements from c. 400 samples have been made, with the goal of identifying key controls on the flow properties of fault rocks in carbonates. Intrinsic and extrinsic factors have been examined, such as host lithofacies, juxtaposition, host porosity and permeability, tectonic regime, displacement, and maximum burial depth, as well as the depth at the time of faulting. The results indicate which factors may have had the most significant influence on fault rock permeability, improving our ability to predict the sealing or baffle behaviour of faults in carbonate reservoirs. Intrinsic factors, such as host porosity, permeability and texture, appear to play the most important role in fault rock development. Extrinsic factors, such as displacement and kinematics, have shown lesser or, in some instances, a negligible control on fault rock development. This conclusion is, however, subject to two research limitations: lack of sufficient data from similar lithofacies at different displacements, and a low number of samples from thrust regimes