348 research outputs found

    Self-Cleaning Surfaces Realized by Biologically Sized Magnetic Artificial Cilia

    Get PDF
    Magnetic artificial cilia (MAC) are small actuators inspired by biological cilia found in nature. In microfluidic chips, MAC can generate flow and remove microparticles, with applications in anti-fouling. However, the MAC used for anti-fouling in the current literature has dimensions of several hundred micrometers in length, which limits the application to relatively large length scales. Here, biologically-sized magnetic artificial cilia (b-MAC) which are only 45 micrometers long and that are randomly distributed on the surface, are used to remove microparticles. It is shown that microparticles with sizes ranging from 5 to 40 µm can be removed efficiently and the final cleanness ranges from 69% to 100%, with the highest cleanness for the highest actuation frequency applied (40 Hz). The lowest cleanness is obtained for microparticles with a size equal to the average pitch between the b-MAC. The randomness in cilia distribution appears to have a positive effect on cleanliness, compared with the authors’ earlier work using a regular cilia array. The demonstrated self-cleaning by the b-MAC constitutes an essential step toward efficient self-cleaning surfaces for real-life application in miniaturized microfluidic devices, such as lab-on-a-chip or organ-on-a-chip devices, as well as for preventing fouling of submerged surfaces such as marine sensors.</p

    Self-Cleaning Surfaces Realized by Biologically Sized Magnetic Artificial Cilia

    Get PDF
    Magnetic artificial cilia (MAC) are small actuators inspired by biological cilia found in nature. In microfluidic chips, MAC can generate flow and remove microparticles, with applications in anti-fouling. However, the MAC used for anti-fouling in the current literature has dimensions of several hundred micrometers in length, which limits the application to relatively large length scales. Here, biologically-sized magnetic artificial cilia (b-MAC) which are only 45 micrometers long and that are randomly distributed on the surface, are used to remove microparticles. It is shown that microparticles with sizes ranging from 5 to 40 µm can be removed efficiently and the final cleanness ranges from 69% to 100%, with the highest cleanness for the highest actuation frequency applied (40 Hz). The lowest cleanness is obtained for microparticles with a size equal to the average pitch between the b-MAC. The randomness in cilia distribution appears to have a positive effect on cleanliness, compared with the authors’ earlier work using a regular cilia array. The demonstrated self-cleaning by the b-MAC constitutes an essential step toward efficient self-cleaning surfaces for real-life application in miniaturized microfluidic devices, such as lab-on-a-chip or organ-on-a-chip devices, as well as for preventing fouling of submerged surfaces such as marine sensors.</p

    Defects and lithium migration in Li<sub>2</sub>CuO<sub>2</sub>

    Get PDF
    Li2CuO2 is an important candidate material as a cathode in lithium ion batteries. Atomistic simulation methods are used to investigate the defect processes, electronic structure and lithium migration mechanisms in Li2CuO2. Here we show that the lithium energy of migration via the vacancy mechanism is very low, at 0.11 eV. The high lithium Frenkel energy (1.88 eV/defect) prompted the consideration of defect engineering strategies in order to increase the concentration of lithium vacancies that act as vehicles for the vacancy mediated lithium self-diffusion in Li2CuO2. It is shown that aluminium doping will significantly reduce the energy required to form a lithium vacancy from 1.88 eV to 0.97 eV for every aluminium introduced, however, it will also increase the migration energy barrier of lithium in the vicinity of the aluminium dopant to 0.22 eV. Still, the introduction of aluminium is favourable compared to the lithium Frenkel process. Other trivalent dopants considered herein require significantly higher solution energies, whereas their impact on the migration energy barrier was more pronounced. When considering the electronic structure of defective Li2CuO2, the presence of aluminium dopants results in the introduction of electronic states into the energy band gap. Therefore, doping with aluminium is an effective doping strategy to increase the concentration of lithium vacancies, with a minimal impact on the kinetics

    Micro-elastometry on whole blood clots using actuated surface-attached posts (ASAPs)

    Get PDF
    We used magnetically actuatable micro-post arrays to measure blood clot elasticity for blood clotting diagnostics

    Lithium diffusion in Li<sub>5</sub>FeO<sub>4</sub>

    Get PDF
    The anti-fluorite type Li5FeO4 has attracted significant interest as a potential cathode material for Li ion batteries due to its high Li content and electrochemical performance. Atomic scale simulation techniques have been employed to study the defects and Li ion migration in Li5FeO4. The calculations suggest that the most favorable intrinsic defect type is calculated to be the cation anti-site defect, in which Li+ and Fe3+ ions exchange positions. Li Frenkel is also found to be lower in this material (0.85 eV/defect). Long range lithium diffusion paths were constructed in Li5FeO4 and it is confirmed that the lower migration paths are three dimensional with the lowest activation energy of migration at 0.45 eV. Here we show that doping by Si on the Fe site is energetically favourable and an efficient way to introduce a high concentration of lithium vacancies. The introduction of Si increases the migration energy barrier of Li in the vicinity of the dopant to 0.59 eV. Nevertheless, the introduction of Si is positive for the diffusivity as the migration energy barrier increase is lower less than that of the lithium Frenkel process, therefore the activation energy of Li diffusion

    Factors Influencing Engagement, Perceived Usefulness and Behavioral Mechanisms Associated with a Text Message Support Program

    Get PDF
    Introduction Many studies have now demonstrated the efficacy of text messaging in positively changing behaviours. We aimed to identify features and factors that explain the effectiveness of a successful text messaging program in terms of user engagement, perceived usefulness, behavior change and program delivery preferences. Methods Mixed methods qualitative design combining four data sources; (i) analytic data extracted directly from the software system, (ii) participant survey, (iii) focus groups to identify barriers and enablers to implementation and mechanisms of effect and (iv) recruitment screening logs and text message responses to examine engagement. This evaluation was conducted within the TEXT ME trial—a parallel design, single-blind randomized controlled trial (RCT) of 710 patients with coronary heart disease (CHD). Qualitative data were interpreted using inductive thematic analysis. Results 307/352 (87% response rate) of recruited patients with CHD completed the program evaluation survey at six months and 25 participated in a focus group. Factors increasing engagement included (i) ability to save and share messages, (ii) having the support of providers and family, (iii) a feeling of support through participation in the program, (iv) the program being initiated close to the time of a cardiovascular event, (v) personalization of the messages, (vi) opportunity for initial face-to-face contact with a provider and (vii) that program and content was perceived to be from a credible source. Clear themes relating to program delivery were that diet and physical activity messages were most valued, four messages per week was ideal and most participants felt program duration should be provided for at least for six months or longer. Conclusions This study provides context and insight into the factors influencing consumer engagement with a text message program aimed at improving health-related behavior. The study suggests program components that may enhance potential success but will require integration at the development stage to optimize up-scaling

    Plasma Dynamics

    Get PDF
    Contains research objectives and summary of research on twenty-one projects split into three sections, with four sub-sections in the second section and reports on twelve research projects.National Science Foundation (Grant ENG75-06242)U.S. Energy Research and Development Administration (Contract E(11-1)-2766)U.S. Energy Research and Development Agency (Contract E(11-1)-3070)U.S. Energy Research and Development Administration (Contract E(11-1)-3070)Research Laboratory of Electronics, M.I.T. Industrial Fellowshi

    Dominant inhibition of Fas ligand-mediated apoptosis due to a heterozygous mutation associated with autoimmune lymphoproliferative syndrome (ALPS) Type Ib

    Get PDF
    <p>Abstract</p> <p>Background:</p> <p>Autoimmune lymphoproliferative syndrome (ALPS) is a disorder of lymphocyte homeostasis and immunological tolerance due primarily to genetic defects in Fas (CD95/APO-1; <it>TNFRSF6</it>), a cell surface receptor that regulates apoptosis and its signaling apparatus.</p> <p>Methods:</p> <p>Fas ligand gene mutations from ALPS patients were identified through cDNA and genomic DNA sequencing. Molecular and biochemical assessment of these mutant Fas ligand proteins were carried out by expressing the mutant FasL cDNA in mammalian cells and analysis its effects on Fas-mediated programmed cell death.</p> <p>Results:</p> <p>We found an ALPS patient that harbored a heterozygous A530G mutation in the FasL gene that replaced Arg with Gly at position 156 in the protein's extracellular Fas-binding region. This produced a dominant-interfering FasL protein that bound to the wild-type FasL protein and prevented it from effectively inducing apoptosis.</p> <p>Conclusion:</p> <p>Our data explain how a naturally occurring heterozygous human FasL mutation can dominantly interfere with normal FasL apoptotic function and lead to an ALPS phenotype, designated Type Ib.</p

    The impact of mindfulness on well-being and performance in the workplace: an inclusive systematic review of the empirical literature

    Get PDF
    Work can be demanding, imposing challenges that can be detrimental to the physical and mental health of workers. Efforts are therefore underway to develop practices and initiatives that may improve occupational well-being. These include interventions based on mindfulness meditation. This paper offers a systematic review of empirical studies featuring analyses of mindfulness in occupational contexts. Databases were reviewed from the start of records to January 2016. Eligibility criteria included experimental and correlative studies of mindfulness conducted in work settings, with a variety of well-being and performance measures. A total of 153 papers met the eligibility criteria and were included in the systematic review, comprising 12,571 participants. Mindfulness was generally associated with positive outcomes in relation to most measures. However, the quality of the studies was inconsistent, so further research is needed, particularly involving high-quality randomized control trials
    • …
    corecore