429 research outputs found

    Mass spectrometric gas composition measurements associated with jet interaction tests in a high-enthalpy wind tunnel

    Get PDF
    Knowledge of test gas composition is important in wind-tunnel experiments measuring aerothermodynamic interactions. This paper describes measurements made by sampling the top of the test section during runs of the Langley 7-Inch High-Temperature Tunnel. The tests were conducted to determine the mixing of gas injected from a flat-plate model into a combustion-heated hypervelocity test stream and to monitor the CO2 produced in the combustion. The Mass Spectrometric (MS) measurements yield the mole fraction of N2 or He and CO2 reaching the sample inlets. The data obtained for several tunnel run conditions are related to the pressures measured in the tunnel test section and at the MS ionizer inlet. The apparent distributions of injected gas species and tunnel gas (CO2) are discussed relative to the sampling techniques. The measurements provided significant real-time data for the distribution of injected gases in the test section. The jet N2 diffused readily from the test stream, but the jet He was mostly entrained. The amounts of CO2 and Ar diffusing upward in the test section for several run conditions indicated the variability of the combustion-gas test-stream composition

    Applying Small Molecule Signal Transducer and Activator of Transcription-3 (STAT3) Protein Inhibitors as Pancreatic Cancer Therapeutics

    Get PDF
    Constitutively activated STAT3 protein has been found to be a key regulator of pancreatic cancer and a target for molecular therapeutic intervention. In this study, PG-S3-001, a small molecule derived from the SH-4-54 class of STAT3 inhibitors, was found to inhibit patient-derived pancreatic cancer cell proliferation in vitro and in vivo in the low micromolar range. PG-S3-001 binds the STAT3 protein potently, Kd = 324 nmol/L by surface plasmon resonance, and showed no effect in a kinome screen (>100 cancer-relevant kinases). In vitro studies demonstrated potent cell killing as well as inhibition of STAT3 activation in pancreatic cancer cells. To better model the tumor and its microenvironment, we utilized three-dimensional (3D) cultures of patient-derived pancreatic cancer cells in the absence and presence of cancer-associated fibroblasts (CAF). In this coculture model, inhibition of tumor growth is maintained following STAT3 inhibition in the presence of CAFs. Confocal microscopy was used to verify tumor cell death following treatment of 3D cocultures with PG-S3-001. The 3D model was predictive of in vivo efficacy as significant tumor growth inhibition was observed upon administration of PG-S3-001. These studies showed that the inhibition of STAT3 was able to impact the survival of tumor cells in a relevant 3D model, as well as in a xenograft model using patient-derived cells

    Measuring coverage in MNCH: indicators for global tracking of newborn care.

    Get PDF
    Neonatal mortality accounts for 43% of under-five mortality. Consequently, improving newborn survival is a global priority. However, although there is increasing consensus on the packages and specific interventions that need to be scaled up to reduce neonatal mortality, there is a lack of clarity on the indicators needed to measure progress. In 2008, in an effort to improve newborn survival, the Newborn Indicators Technical Working Group (TWG) was convened by the Saving Newborn Lives program at Save the Children to provide a forum to develop the indicators and standard measurement tools that are needed to measure coverage of key newborn interventions. The TWG, which included evaluation and measurement experts, researchers, individuals from United Nations agencies and non-governmental organizations, and donors, prioritized improved consistency of measurement of postnatal care for women and newborns and of immediate care behaviors and practices for newborns. In addition, the TWG promoted increased data availability through inclusion of additional questions in nationally representative surveys, such as the United States Agency for International Development-supported Demographic and Health Surveys and the United Nations Children's Fund-supported Multiple Indicator Cluster Surveys. Several studies have been undertaken that have informed revisions of indicators and survey tools, and global postnatal care coverage indicators have been finalized. Consensus has been achieved on three additional indicators for care of the newborn after birth (drying, delayed bathing, and cutting the cord with a clean instrument), and on testing two further indicators (immediate skin-to-skin care and applications to the umbilical cord). Finally, important measurement gaps have been identified regarding coverage data for evidence-based interventions, such as Kangaroo Mother Care and care seeking for newborn infection

    Ovulation-stimulation drugs and cancer risks: a long-term follow-up of a British cohort

    Get PDF
    To assess long-term health effects of ovarian-stimulation drugs we followed-up for over 20 years a British cohort of 7355 women with ovulatory disorders, 43% of whom were prescribed ovarian-stimulation drugs, and identified a total of 274 deaths and 367 incident cancers. Relative to the general population, the cohort experienced lower mortality from most causes, including from all neoplasms combined, and lower incidence of cervical cancer, but higher incidence of cancers of the breast (relative risk: 1.13; 95% CI 0.97, 1.30) and corpus uteri (2.02; 1.37, 2.87). There were, however, no significant differences in the risk of cancers of the breast, corpus uteri, ovary, or of any other site, between women who had been prescribed ovarian-stimulation drugs and those who had not. Further analyses by type of drug and dose revealed a dose–response gradient in the risk of cancer of the corpus uteri (P for linear trend=0.03), with women given β©Ύ2250 mg of clomiphene having a 2.6-fold (2.62; 0.94, 6.82) increase in risk relative to those who were not treated. These findings do not support strong associations between ovulation-stimulation drugs and cancer risks, but they indicate the need for continued monitoring to establish whether risks are elevated in certain subgroups of users

    The G67E mutation in hMLH1 is associated with an unusual presentation of Lynch syndrome

    Get PDF
    Germline mutations in the mismatch repair (MMR) genes are associated with Lynch syndrome, also known as hereditary non-polyposis colorectal cancer (HNPCC) syndrome. Here, we characterise a variant of hMLH1 that confers a loss-of-function MMR phenotype. The mutation changes the highly conserved Gly67 residue to a glutamate (G67E) and is reminiscent of the hMLH1-p.Gly67Arg mutation, which is present in several Lynch syndrome cohorts. hMLH1-Gly67Arg has previously been shown to confer loss-of-function (Shimodaira et al, 1998), and two functional assays suggest that the hMLH1-Gly67Glu protein fails to sustain normal MMR functions. In the first assay, hMLH1-Gly67Glu abolishes the protein's ability to interfere with MMR in yeast. In the second assay, mutation of the analogous residue in yMLH1 (yMLH1-Gly64Glu) causes a loss-of-function mutator phenotype similar to yMLH1-Gly64Arg. Despite these molecular similarities, an unusual spectrum of tumours is associated with hMLH1-Gly67Glu, which is not typical of those associated with Lynch syndrome and differs from those found in families carrying the hMLH1-Gly67Arg allele. This suggests that hMLH1 may have different functions in certain tissues and/or that additional factors may modify the influence of hMLH1 mutations in causing Lynch syndrome

    Methods for comprehensive chromosome screening of oocytes and embryos: capabilities, limitations, and evidence of validity

    Get PDF
    Preimplantation aneuploidy screening of cleavage stage embryos using fluorescence in situ hybridization (FISH) may no longer be considered the standard of care in reproductive medicine. Over the last few years, there has been considerable development of novel technologies for comprehensive chromosome screening (CCS) of the human genome. Among the notable methodologies that have been incorporated are whole genome amplification, metaphase and array based comparative genomic hybridization, single nucleotide polymorphism microarrays, and quantitative real-time PCR. As these methods become more integral to treating patients with infertility, it is critical that clinicians and scientists obtain a better understanding of their capabilities and limitations. This article will focus on reviewing these technologies and the evidence of their validity

    Genetic instability in lung cancer: concurrent analysis of chromosomal, mini- and microsatellite instability and loss of heterozygosity

    Get PDF
    To investigate what kind of genetic instability plays important roles in lung carcinogenesis, we analyzed micro- and minisatellite instability, loss of heterozygosity (LOH) and chromosome instability in 55 cases of lung cancer, including, 10 squamous cell, 5 large cell, and 3 small cell carcinomas, and 37 adenocarcinomas. Analysis of minisatellite instability, the mechanism of which is different from microsatellite instability, has not been reported previously. Minisatellite instability was detected in only one case (1/55, 1.8%), and the frequency of microsatellite instability was low, being found only in three cases (3/55, 5.5%). In contrast, LOH, for at least in one locus, was observed in 27 cases (49.1%). In adenocarcinomas, the frequency of LOH was higher in poorly differentiated compared to more differentiated carcinomas. For chromosome instability, a similar correlation between differentiation grade and instability was observed in adenocarcinomas. And instability was more common in large cell and small cell carcinomas than in adenocarcinomas. Our analysis showed that chromosome instability and LOH, rather than mini- and microsatellite instability, play significant roles in the development of lung cancer

    Analysis of Microsatellite Polymorphism in Inbred Knockout Mice

    Get PDF
    Previously, we found that the genotype of 42 out of 198 mouse microsatellite loci, which are distributed among all chromosomes except the Y chromosome, changed from monomorphism to polymorphism (CMP) in a genetically modified inbred mouse strain. In this study, we further examined whether CMP also relates to the homologous recombination in gene knockout (KO) mouse strains. The same 42 microsatellite loci were analyzed by polymerase chain reaction (PCR) in 29 KO inbred mouse strains via short tandem sequence repeat (STR) scanning and direct sequence cloning to justify microsatellite polymorphisms. The C57BL/6J and 129 mouse strains, from which these 29 KO mice were derived, were chosen as the background controls. The results indicated that 10 out of 42 (23.8%) loci showed CMP in some of these mouse strains. Except for the trinucleotide repeat locus of D3Mit22, which had microsatellite CMP in strain number 9, the core sequences of the remaining 41 loci were dinucleotide repeats, and 9 out of 41 (21.95%) showed CMPs among detected mouse strains. However, 11 out of 29 (37.9%) KO mice strains were recognized as having CMPs. The popular dinucleotide motifs in CMP were (TG)n (50%, 2/4), followed by (GT)n (27.27%, 3/11) and (CA)n (23.08%, 3/13). The microsatellite CMP in (CT)n and (AG)n repeats were 20% (1/5). According to cloning sequencing results, 6 KO mouse strains showed insertions of nucleotides whereas 1 showed a deletion. Furthermore, 2 loci (D13Mit3 and D14Mit102) revealed CMP in 2 strains, and mouse strain number 9 showed CMPs in two loci (D3Mit22 and D13Mit3) simultaneously. Collectively, these results indicated that microsatellite polymorphisms were present in the examined inbred KO mice

    Inactivation of PNKP by mutant ATXN3 triggers apoptosis by activating the DNA damage-response pathway in SCA3.

    Get PDF
    Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is an untreatable autosomal dominant neurodegenerative disease, and the most common such inherited ataxia worldwide. The mutation in SCA3 is the expansion of a polymorphic CAG tri-nucleotide repeat sequence in the C-terminal coding region of the ATXN3 gene at chromosomal locus 14q32.1. The mutant ATXN3 protein encoding expanded glutamine (polyQ) sequences interacts with multiple proteins in vivo, and is deposited as aggregates in the SCA3 brain. A large body of literature suggests that the loss of function of the native ATNX3-interacting proteins that are deposited in the polyQ aggregates contributes to cellular toxicity, systemic neurodegeneration and the pathogenic mechanism in SCA3. Nonetheless, a significant understanding of the disease etiology of SCA3, the molecular mechanism by which the polyQ expansions in the mutant ATXN3 induce neurodegeneration in SCA3 has remained elusive. In the present study, we show that the essential DNA strand break repair enzyme PNKP (polynucleotide kinase 3'-phosphatase) interacts with, and is inactivated by, the mutant ATXN3, resulting in inefficient DNA repair, persistent accumulation of DNA damage/strand breaks, and subsequent chronic activation of the DNA damage-response ataxia telangiectasia-mutated (ATM) signaling pathway in SCA3. We report that persistent accumulation of DNA damage/strand breaks and chronic activation of the serine/threonine kinase ATM and the downstream p53 and protein kinase C-d pro-apoptotic pathways trigger neuronal dysfunction and eventually neuronal death in SCA3. Either PNKP overexpression or pharmacological inhibition of ATM dramatically blocked mutant ATXN3-mediated cell death. Discovery of the mechanism by which mutant ATXN3 induces DNA damage and amplifies the pro-death signaling pathways provides a molecular basis for neurodegeneration due to PNKP inactivation in SCA3, and for the first time offers a possible approach to treatment.This study was funded by NIH grant NS073976 to TKH and a John Sealy Grant to PSS
    • …
    corecore