
Applying Small Molecule Signal Transducer and Activator of 
Trancription-3 (STAT3) Protein Inhibitors as Pancreatic Cancer 
Therapeutics

Carolynn C. Arpin1, Stephen Mac1, Yanlin Jiang2, Huiwen Cheng2, Michelle Grimard2, Brent 
D. G. Page1, Malgorzata M. Kamocka3, Sina Haftchenary1, Han Su4, Daniel Ball1, David A. 
Rosa1, Ping-Shan Lai1, Rodolfo F. Gómez-Biagi1, Ahmed M. Ali1,5, Rahul Rana1, Helmut 
Hanenberg2,6,7, Kagan Kerman4, Kyle C McElyea8, George E. Sandusky8, Patrick T. 
Gunning1,*, and Melissa L. Fishel2,9,*

1Department of Chemistry, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada

2Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of 
Medicine, Indianapolis, IN 46202

3Department of Medicine, Division of Nephrology, Indiana Center for Biological Microscopy, 
Indiana University School of Medicine, Indianapolis, IN 46202

4Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 
Military Trail, Toronto, ON M1C 1A4, Canada

5Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt

6Department of Pediatrics III, University Children’s Hospital Essen, University of Duisburg-Essen, 
45122 Essen, Germany

7Department of Otorhinolaryngology and Head/Neck Surgery (ENT) Heinrich Heine University, 
Dusseldorf, Germany

8Department of Pathology and Lab Medicine, Indiana University School of Medicine, Indianapolis, 
IN 46202

9Department of Pharmacology and Toxicology, Indiana University School of Medicine, 
Indianapolis, IN 46202

Abstract

Constitutively activated Signal Transducer and Activator of Transcription 3 (STAT3) protein has 

been found to be a key regulator of pancreatic cancer and a target for molecular therapeutic 

intervention. In this study PG-S3-001, a small molecule derived from the SH-4-54 class of STAT3 

inhibitors, was found to inhibit patient-derived pancreatic cancer cell proliferation in vitro and in 
vivo in the low μM range. PG-S3-001 binds the STAT3 protein potently, Kd = 324 nM by SPR, 
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showed no effect in a kinome screen (> 100 cancer-relevant kinases). In vitro studies demonstrated 

potent cell killing as well as inhibition of STAT3 activation in pancreatic cancer cells. To better 

model the tumor and its microenvironment, we utilized 3-Dimensional (3D) cultures of patient-

derived pancreatic cancer cells in the absence and presence of cancer-associated fibroblasts 

(CAFs). In this co-culture model, inhibition of tumor growth is maintained following STAT3 

inhibition in the presence of CAFs. Confocal microscopy was used to verify tumor cell death 

following treatment of 3D co-cultures with PG-S3-001. The 3D model was predictive of in vivo 
efficacy as significant tumor growth inhibition was observed upon administration of PG-S3-001. 

These studies showed that the inhibition of STAT3 was able to impact the survival of tumor cells 

in a relevant 3D model, as well as in a xenograft model using patient-derived cells.
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Introduction

Approximately 25% of all deaths per year in the U.S. are caused by cancer, where pancreatic 

cancer is one of the most aggressive and lethal types (1). Patients face a one-year survival 

rate of 25% and a 5-year survival rate of only 6% (2). A proposed factor in the limited 

success of molecular therapies has been the heterogeneity found in pancreatic ductal 

adenocarcinoma (PDAC) samples pointing toward the need for strategies that target proteins 

that can affect multiple pathways (3–5). Lack of clinical efficacy is due, in part, to the 

desmoplastic fibrosis that accompanies pancreatic cancer (6, 7). The surrounding fibrotic 

network plays a principal role in supporting local tumor growth and distant metastasis (8–

10). The challenge has been to identify the molecular effectors that critically regulate the 

survival of pancreatic cancer cells, to devise effective molecular-targeted strategies that can 

prevent or minimize the selection of resistant tumor variants, and then to penetrate the 

fibrotic nature of these tumors. Moreover, studies of stroma-specific depletion surprisingly 

found a decrease in survival rates of transgenic mouse models of pancreatic cancer 

attributing the loss of activated stroma to reduced survival (11, 12). As the contribution of 

the stroma is further investigated, future treatments for PDAC must be able to target the 

tumor in the presence of its associated microenvironment.

These studies address the role of Signal Transducer and Activator of Transcription 3 

(STAT3) protein as a critical molecular target in pancreatic cancer. STAT3 is a transcription 

factor that regulates critical cell functions and has been implicated in several cancers, 

including breast, prostate, liver, and pancreas (13–15). In pancreatic cancer, STAT3 has been 

associated with cell proliferation and viability, as well as with angiogenesis and metastases 

(16–19). In genetically engineered mouse (GEMs) models of pancreatic cancer, STAT3 has 

been implicated in the establishment of early PDAC lesions (15, 20) as well as associated 

with tumor and stromal cell proliferation and resistance to gemcitabine therapy (21). STAT3 

signaling is prevalent within the pancreatic tumor microenvironment as detailed herein. 

STAT3 activation can be regulated by several mechanisms, including phosphorylation and 

redox status (7, 22, 23). Several in vitro and in vivo studies using immortalized cells as well 
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as tumor cell lines showed that STAT3 blockade or inactivation (RNAi or pharmacological 

blockade) exerts inhibitory effects on the survival, proliferation, colony formation or 

invasiveness of human PDAC cells (24). Together, these results have identified STAT3 as an 

appealing target for therapeutic intervention (25–27).

STAT3 signaling (28) is initiated by extracellular cytokine/growth factor stimulation of a 

respective transmembrane protein, which results in the intracellular phosphorylation of key 

tyrosine (Y) residues. Cytokine binding to their cognate receptor leads to activation of a JAK 

(Janus kinase) protein, which then phosphorylates and activates cytoplasmic STAT3 protein. 

These phosphotyrosines (p-Y’s) serve as docking sites for the Src Homology 2 (SH2) 

domain of STAT3, and once bound, STAT3 is phosphorylated on Y705. Phosphorylated 

STAT3 then dissociates and forms active homo-dimers via reciprocal binding of the SH2 

domain of one protein and the p-Y705 of another. These transcriptionally-active dimers then 

translocate to the nucleus, bind to DNA, and promote target gene expression. While STAT3 

activity is transient in healthy cells, it is often aberrant and constitutively active in cancer 

cells, including pancreatic cancer.

The STAT3 SH2 domain is integral to protein function. This shallow pocket binds 

transmembrane proteins, which enables STAT3 phosphorylation, activation, and formation 

of transcriptionally-active STAT3 homo-dimers (29). Previous efforts have focused on 

inhibiting STAT3 function by blocking the pY binding site within the SH2 domain (30) or 

the DNA binding domain. In general, STAT3 compounds have included peptidomimetics, 

(31, 32) oligonucleotides (33–35), metal complexes (36, 37), and small molecule inhibitors 

(38–43). Inhibitors operating via DNA binding domain blockade include inS3-54 (44) as 

well as Galeillalactone (45). Our efforts have focused on developing small molecule 

inhibitors of the SH2 domain: BP-1-102 (46, 47), BP-5-87 (48), and SH-4-54 (49). 

Unfortunately, only a small number of small molecule inhibitors for STAT3 protein have 

potencies and selectivity profiles suitable for advanced preclinical evaluation (26, 50). The 

discovery of a clinically relevant direct-binding STAT3 inhibitor has yet to be achieved. In 

this study, we sought to identify the most potent STAT3 inhibitors from a library of >100 

salicylic and benzoic acid-based inhibitors, known to have STAT SH2 domain binding 

potential, and study the effects of these top-ranked analogs on PDAC tumor and stroma 

interactions.

Herein, we utilize state-of-the-art models, including 3D cultures of low passage patient-

derived PDAC cells in the absence and presence of cancer-associated fibroblasts (CAFs) to 

better model the pancreatic tumor and its tumor microenvironment (TME) in vivo. Three-

dimensional (3D) model systems more accurately mimic the complexity of cancer biology, 

compared to monolayer cell culture, and have the potential to provide relevant answers 

related to cancer treatment and disease specific, pancreatic cancer drug development (51, 

52). Inhibition of tumor growth was observed following STAT3 inhibition as well as in vivo 
tumor efficacy studies. Blockade of STAT3 activity using BP-1-102, SH-4-54, and PG-

S3-001 lead to PDAC cell death in vitro and tumor regression both in 3D co-culture systems 

and in vivo xenograft models of PDAC. Moreover, these studies showed that inhibition of 

STAT3 impacted the survival of tumor cells even in the presence of CAFs from the tumor 

Arpin et al. Page 3

Mol Cancer Ther. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



microenvironment. These studies support our hypothesis that STAT3 is a significant 

molecular target in PDAC.

Materials and Methods

Synthesis of STAT3 small molecules

All of the details of the chemistry for the library preparation and synthesis are contained in 

the Supplementary files. This file contains a detailed description of the synthesis as well as 

the characterization of lead compounds PG-S3-001, PG-S3-002, and PG-S3-003.

Cell lines and patient-derived PDAC cells

Pa03C, Panc10.05, Pa02C, and CAF19 were obtained from Dr. Anirban Maitra at The Johns 

Hopkins University (3). Upon receipt of the cells, we used STR (short tandem repeat) 

analysis (CellCheck with IDEXX BioResearch) to confirm that we indeed received the 

aforementioned cells from Dr. Maitra and we rechecked them via the same method in June 

2015. Normal lung fibroblasts, CCD-13Lu and MIA-PaCa-2 were obtained from ATCC and 

were passaged for fewer than 6 months after resuscitation. All cells were maintained at 

37 °C in 5% CO2, grown in DMEM (Invitrogen; Carlsbad, CA) with 10% Serum (Hyclone; 

Logan, UT), and mycoplasma-free. The CAF19 cells were transduced with a lentivirus 

vector in order to make them stably express EGFP (enhanced green fluorescent protein) 

(53), and Pa03C cells were transduced with a lentivirus vector (pCL7TdTOMwo) in order to 

make them stably express TdTomato. CAF19 cells were seeded 24 h before 150 pfu/cell of 

the lentivirus was added to the media. One day later, the virus was removed; then cells were 

grown an additional 2 days in regular media.

Survival and proliferation studies

The proliferative capacity of PDAC and CAF19 cells as a monolayer was assessed using 

MTS tetrazolium dye assay as previously described (7). Using 96-well plates, we seeded 

either tumor cells alone (2,000–3,000 cell/well), CAFs alone (4,000 cell/well), or tumor + 

CAFs at a ratio of 2:1. STAT3 inhibitors were added 24 h after cells were seeded and MTS 

assay was performed 72 h later.

Three-dimensional Growth Assays

Ninety-six well plates were coated with 1% Noble Agar (Difco, 214220) in 10% serum 

containing media (50 μL/well) as described previously (54). Pa03C cells were re-suspended 

in normal growth media containing 3% Matrigel (BD Biosciences) at a cell density of 500 

cells/well and plated on top of solidified 1% Noble Agar. Cells were treated on days 4 and 8 

following plating with media containing 10% serum, 3% Matrigel, and STAT3 inhibitors. 

CellTracker dye (25 μM) or TdTomato via lentivirus was used to label these cells for 

confocal experiments to preserve the genetic characteristics of the low passage patient cells 

(3). The vehicle control was DMSO, was less than 0.01% of the volume, and was equivalent 

in each well. On Day 12, either Alamar blue reagent (LifeTechnologies) was added to each 

well (10μL/well) and incubated for 4 hr or spheroids were analyzed using Thermo 

ArrayScan high-content imaging system (55, 56). For Alamar blue assays, fluorescence 

reading at 544, 590 nM was then taken and used to assess survival following STAT3 
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inhibition. Images of 3D structures were captured by ArrayScan using a 2.5x objective for 

TdTomato and EGFP; then 2D projections were processed to quantify differences in total 

intensity and total area of both CAFs and tumor. After summarizing 4–5 repeats in both 

monolayer and 3D proliferation assays, we calculated effective dose-50 (ED50s) for each 

compound using a line of best fit (i.e. linear regression model) where the percent survival 

equaled 50%.

Western blot analysis

Cells were harvested, lysed in RIPA buffer (Santa Cruz Biotechnology; Santa Cruz, CA), 

and protein was quantified and electrophoresed as previously described (7). Immunoblotting 

was performed using the following antibodies: total STAT3, and p-STAT3(p-Y705) (Cell 

Signaling; Danvers, MA) at a 1:1000 dilution.

Imaging of 3-Dimensional Spheres

In order to visualize the tumor cells for imaging of the structure, we labeled the Pa03C cells 

with CellTracker fluorescent probe (Invitrogen, C34552). We incubated the cells with 25 μM 

probe for 45 min in serum free media, then we spun down the cells, and let them recover in 

media containing serum for 30 min at 37 °C. CAFs utilized in these experiments stably 

express EGFP as described above. We imaged the cells on Days 5 and 11 to capture the 

effect of STAT3 inhibition in the middle and end of the 3D assay. On Day 11, we added 

Alamar blue to the wells to confirm the decrease in proliferation visualized by the confocal 

fluorescent imaging.

Confocal images of spheres were acquired with a confocal/two-photon Olympus Fluoview 

FV-1000 MPE system (Olympus America, Central Valley, PA) available at the Indiana 

Center for Biological Microscopy (ICBM) facility (Indianapolis, IN), using an Olympus 

UMPLFL 10X W NA:0.30 air objective and XLUMPLFL 20X water NA:0.95 lenses. 

Images were collected at 512×512 frame size, 8 μs pixel dwell time, and in a sequential 

illumination mode using 488- and 559-nm excitation laser lines. Emission light was 

collected with two spectral detectors set up at 500–545 nm and 570–670 nm filter ranges. 

Due to the large size and density of the control and vehicle-treated spheres, accurate 

visualization of the entire sphere using confocal scanning mode was not possible on Day 11. 

It was hypothesized that this was due to compromised light penetration through the tightly 

packed spheres. Therefore, transmitted light images were collected simultaneously with 

confocal scans to evaluate overall size for the spheres. Axial scanning (Zstack) was 

performed, optical consecutive and parallel slices were collected using optimal step size. 

Maximum intensity projection (MIP) images were created out of collected image data stacks 

using Olympus Fluoview Image Viewer v.3.0. 3D reconstruction images were created out of 

collected image data stacks using Amira software (FEI Co., Hillsboro, OR).

In vivo efficacy of STAT3 inhibitors in low passage patient-derived cells

All studies were carried out in accordance with, and approval of, the Institutional Animal 

Care and Use Committee of Indiana University Medical School, and the Guide for the Care 

and Use of Laboratory Animals. Male and female NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ 

(common name NSG) mice were obtained from the In Vivo Therapeutics Core of the 
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Indiana University Simon Cancer Center. Animals were housed under pathogen-free 

conditions and maintained on Teklad Lab Animal Diet (P/N TD 2014, Harlan Laboratories 

USA) with ad libitum access to sterile tap water under a 12-hour light-dark cycle at 22–

24 °C. Using low passage patient-derived cells, Pa03C, ectopic xenografts were grown in 

NSG mice. Pa03C cells (2.5×106 cells/mouse) in 0.2 ml of DMEM media:Matrigel (50:50) 

were implanted subcutaneously (s.c.) into the right flanks of NSG mice. Compound PG-

S3-001 was dissolved in 4% CremophorEL:EtOH (1:1) / saline solution. When tumor 

volumes were 71±4 mm3, compound PG-S3-001 was administered once daily at 10 mg/kg 

for 15 days intrapertitoneal (ip). Mice were weighed twice weekly to assess toxicity. Tumors 

were measured weekly during treatment. Tumor volumes were monitored by caliper 

measurement [tumor volume = length × (perpendicular width)2 × 0.5] and the average tumor 

volume in mm3 for each treatment group was plotted. Treatment started on day 8 post-

implant. Average tumor volume ± SE for the vehicle (n=18) and PG-S3-001-treated (n=16) 

xenografts was analyzed by student’s t test. On day 25, the mice were sacrificed and the 

tumors excised and weighed.

Immunohistochemistry of tumor tissue

Tissues were fixed overnight at room temperature in 10% NBF after which they were 

transferred through graded concentrations of alcohol to xylene inside a Leica Automated 

Vacuum Tissue Processor. Tissues were embedded in paraffin before being cut into 5 micron 

thick sections, mounted onto positively charged slides, and baked at 60°C. The slides were 

then deparaffinized in xylene and rehydrated through graded alcohols to water. Antigen 

retrieval was performed by immersing the slides in a Target Retrieval Solution (Dako) for 20 

min. at 90°C. (in a water bath), cooling at room temperature for 10 min., washing in water 

and then proceeding with immunostaining. Slides were blocked with protein blocking 

solution (Dako) for 30 mins. All subsequent staining steps were performed using the Dako 

FLEX SYSTEM on an automated Immunostainer; incubations were done at room 

temperature and Tris buffered saline plus 0.05% Tween 20, pH 7.4 (TBS - Dako Corp.) was 

used for all washes and diluents. The primary antibodies were anti-mouse phospho-Histone 

H3 (1:500, Dako) and p-STAT3 (1:25, Cell Signaling). Control sections were treated with an 

isotype control using the same concentration as primary antibodies to verify the staining 

specificity. The Aperio whole slide digital imaging system was used for imaging. The 

Aperio ScanScope CS system was used (360 Park Center Drive Vista, CA 92081). The 

system imaged all slides at 20x. Slides were reviewed by two pathologists, and tissue was 

recorded as % tumor, % necrosis, % inflammation, and % stroma. The pathology hand count 

was only evaluated in an area of viable tumor cells. An average of mitotic figures (at x20) 

were hand-counted from four hot-spot areas on each tissue. The control and treatment 

groups were then evaluated for statistical differences.

Determination of inhibitory constants for small-molecules using Fluorescence Polarization 
(FP) assays

Competitive binding FP assays were performed for the lead inhibitors PG-S3-001, PG-

S3-002, and PG-S3-003 against STAT3 protein. The assays were performed in flat black 

384-well plates (Corning #3573) and FP measurements were taken with the Infinite M1000 

machine (Tecan, Crailsheim, Germany). The buffer conditions for all assays were 10 mM 
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HEPES, 50 mM NaCl, 1 mM EDTA, 2 mM TCEP, pH 7.5 and the final DMSO 

concentration in the wells was kept constant at 10%. Calibration curves for the wildtype 

STAT3 proteins were derived by incubating a 10 nM final concentration of a fluoresceinated-

phosphopeptide (5-FAM-GpYLPQTV for STAT3), with increasing concentrations of 

protein. The point at which 80% of the fluoresceinated-phosphopeptide was bound was used 

as the optimal protein concentration required for the competitive FP assays. For the STAT3 

FP assays, the 5-FAM-GpYLPQTV-NH2 peptide and STAT3 protein were incubated for 30 

min. at room temperature. Inhibitors were titrated at concentrations ranging from 1 nM to 

500 μM and incubated for a further 15 min. at which point FP measurements were taken in 

triplicate. The final well concentrations of the fluoresceinated-phosphopeptide and STAT3 

protein were 10 nM and 250 nM, respectively. FP measurements were normalized and 

plotted against inhibitor concentration on a logarithmic scale. The raw data was fitted with a 

standard dose-normalized response inhibition curve using GraphPad Prism 6 software. All 

inhibitory constants and Ki values are summarized in Fig 2 (57).

Surface Plasmon Resonance (SPR) Spectroscopy

SPR binding experiments were performed using a ProteOn™ XPR36 (Bio-Rad Laboratories 

Ltd.). ProteOn™ HTE sensor chips (#176-5033) that had an elevated tris-NTA surface 

density optimal for protein-small molecule interactions were used in connection with 

ProteOn HTE capturing kit. The horizontal and vertical spots of the sensor chips were 

conditioned using consecutive injections of 0.5% SDS, 50 mM NaOH, 100 mM HCl 

followed by 300 mM EDTA for 1 min. each at a flow rate of 30 μL/min. Then, the sensor 

chips were activated using 10 mM NiSO4 for 2 min. in the horizontal orientation at a flow 

rate of 30 μL/min. Immediately after the activation step, His-tagged STAT3 (0.5 – 25 μg/mL, 

SignalChem, Richmond, BC) protein was immobilized until the desired ligand 

immobilization level of ~12 kRU was obtained at a flow rate of 30 μL/min. Small molecules 

were injected at various concentrations both in vertical (control spots with no protein) and 

horizontal (protein-immobilized spots) orientations at a flow rate of 5 μL/min. To determine 

the full kinetic profile, small molecule-protein binding spectrograms were evaluated using 

the ProteOn™Manager software.

Docking of inhibitors to STAT3 and visualization of the computed receptor-ligand complex

Ligand structures were modeled and the geometry optimized in Maestro 9.9 (Schrödiner 

Suite). The STAT3 crystal structure in complex with DNA (PDB ID:1Y1U) was imported in 

Maestro where water molecules and the DNA oligonucleotides were removed. Hydrogen 

atoms were added followed by assigning Gasteiger charges to the receptor. Molecular 

docking simulations were performed with Glide 6.5 using a receptor grid localized within 

the STAT3 SH2 domain. Simulation results were analyzed using Pose Viewer and imported 

to MacPyMol v.1.7.6. Molecular docking protocols are outlined in the supporting 

information (57–59).

qPCR Off-Target Screening for Kinome Activity

A competitive qPCR screening was employed to identify off-target activity of PG-S3-001 

against a comprehensive DiscoveRx KINOMEscan library of 132 human kinases. In this 

assay, kinases labeled with DNA were treated with PG-S3-001 (5 μM single concentration) 
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and incubated with an immobilized ligand designed to capture its target kinase. Ultra-

sensitive quantitative PCR (qPCR) is employed to measure levels of immobilized kinases 

when treated with PG-S3-001 and relative kinase levels compared to control samples. In this 

screen, hits are classified as compounds where captured kinase levels fall below a 30% 

threshold. Images were generated using TREEspot software tool and reprinted with 

permission from KINOMEscan, a division of DiscoveRx Corporation. Results pertaining to 

the interaction of PG-S3-001 with relevant kinases is included in the Supplementary files 

(Supplementary Table 1).

Results

Screening of novel STAT3 inhibitors in patient-derived pancreatic cancer cell lines

To identify compounds best suited for targeting p-STAT3 in PDAC cell lines, we conducted 

a screen of 52 salicylic and benzoic acid containing compounds prepared in our lab with 

demonstrated anti-cancer activity on p-STAT3-containing tumor cell lines. In total, 52 

compounds (including a range of previously published inhibitors) were screened using a cell 

viability assay employing low passage patient-derived cells, Panc10.05. Previous work 

demonstrated that both these cells and the additional patient derived cells (Pa03C) used here, 

express p-STAT3 and can be killed following inhibition of p-STAT3 (7). This initial screen 

revealed that three of the newly synthesized derivatives PG-S3-001, PG-S3-002, and PG-

S3-003 (Fig. 1A) were more potent than, BP-1-102. For our proliferation assays, BP-1-102 

and SH-4-54 were utilized as comparator parent compounds (Fig. 1B, C). Specifically, PG-

S3-001 and PG-S3-002 displayed enhanced efficacy against PDAC cells, with respective 

ED50 values of 2.4 ± 0.2μM and 3.0 ± 0.1μM (Fig. 1C). PG-S3-003 was less effective than 

PG-S3-001, PG-S3-002, and SH-4-54 at blocking proliferation of Panc10.05 cells, with an 

ED50 value of 18.7 ± 1.1μM for PG-S3-003 and 8.7 ± 1.9 μM for SH-4-54 (Fig. 1C). In the 

case of PG-S3-003, the valine linker afforded a modest increase in potency over parent 

compound, BP-1-102. A similar trend was observed with SH-4-54’s congener, PG-S3-001 

(Fig. 1B), where an approximate 3-fold enhancement in activity was observed. The increase 

in potency could be attributed to valine acting as a conformational lock; restricting the 

number of accessible conformations and decreasing the entropic cost of binding to STAT3.

Predictive computational modeling of PG-S3-001 to the SH2 domain of STAT3: analysis of 
ligand-receptor interaction

The initial lead STAT3 inhibitors, BP-1-102 and SH-4-54 both possess a relatively flexible 

glycine core. The conformational effect of the bulkier isopropyl alkyl appendage of PG-

S3-001 was investigated in silico using the molecular docking software, Glide 6.5 

(Schrödinger Suite). As previously reported, BP-1-102 and SH-4-54, which differ only by a 

phenolic hydroxide, have essentially identical structural orientation and energetic contacts 

with STAT3 (49). Comparative docking within the SH2 domain of PG-S3-001 is shown in 

Fig. 2A. It revealed analogous electrostatic interactions between the carboxylate group of the 

inhibitor with the positively charged and hydrophilic pY-recognition pocket consisting of 

Arg609, Ser611, Ser613 and Lys591. The cyclohexylbenzyl appendage of PG-S3-001 

projects towards Glu638 whereas the pentafluorobenzene of PG-S3-001 was shown to adopt 

a different conformation relative to both SH-4-54 and BP-1-102. As seen from Fig. 2A and a 

Arpin et al. Page 8

Mol Cancer Ther. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



two-dimensional interaction map (Fig. 2B), the pentafluorobenzne group forms dipolar 

interaction with the backbone carbonyl oxygen of Pro715 and favourable hydrophobic 

contact with Phe716. Finally, it was observed that PG-S3-001 adopts a conformation such 

that the isopropyl appendage interacts with the alkyl side chain of Ile634.

Measuring inhibitor binding to STAT3 protein

With three lead compounds in hand, two biophysical techniques were used to assess 

inhibitor binding to the STAT3 protein. First, a fluorescence polarization (FP) assay was 

employed to measure the disruption of the native p-STAT3 SH2 domain complex in the 

presence of inhibitor as an initial gauge of binding affinity. The lead compounds, PG-

S3-001, PG-S3-002, and PG-S3-003 demonstrated modest binding affinities to STAT3 

protein (Ki = 72 ± 6 μM, 45 ± 7μM, and 39 ± 3 μM, respectively; Fig. 3A).

Second, SPR spectroscopy was used to determine the Kd (kon/koff) values for PG-S3-001 

and PG-S3-002 against STAT3. Calculated Kd’s for PG-S3-001 and PG-S3-002 were 324 

± 37 nM and 301 ± 32 nM, respectively (Fig. 3B), which were comparable to that of parent 

compound SH-4-54 (300 ± 27 nM). It can be seen from the SPR traces that both compounds 

appear to have either slow dissociative off-rates (koff), suggesting longer target–drug 

residence times, or are irreversible inhibitors. For example, it is possible that PG-S3-001 is 

alkylating the STAT3 protein through cysteine mediated nucleophilic aromatic substitution 

at the para-arylfluoride position of the pentafluorobenzene. The difference in activity relative 

to the FP data is likely explained by PG-S3-001 binding to a region of STAT3 other than the 

SH2 domain. This postulated mechanism of action will be investigated in future studies. 

However, given the Panc10.05 cell viability and biophysical data, PG-S3-001 was selected 

as the lead compound.

Lead STAT3 inhibitor effectively disrupts PDAC and CAF cell survival and proliferation 
individually and in co-culture

In addition to the tumor cell proliferation studies in Fig. 1, additional validating studies in 

low passage patient derived cell line, Pa03C, were performed. The cytotoxicity of PG-

S3-001 was evaluated in the MTS assay in these cells (Fig. 4A), cancer associated 

fibroblasts (CAF19, Fig. 4B) and in a 2:1 co-culture (Fig. 4C) to determine its cellular 

efficacy. In all three cultures, PG-S3-001 (IC50 = 3.7 ± 0.4 μM, tumor cells; 4.0 ± 0.7 μM, 

CAFs; 4.7 ± 0.1 μM, co-culture) exceeded the performance of parent compounds BP-1-102 

(IC50 = 19.1 ± 0.9 μM, tumor cells; 15.2 ± 2.7 μM CAFs; 16.4 ± 0.6 μM co-culture) and 

SH-4-54 (IC50 = 9.2 ± 1.7 μM tumor cells; 7.6 ± 0.9 μM CAFs; 11.8 ± 1.1 μM co-culture) at 

concentrations below their half maximal inhibition concentration (IC50s). Furthermore, cell 

proliferation was monitored using normal human lung fibroblasts, CCD-13Lu following 

STAT3 inhibition. It has been previously shown that STAT3 inhibition is more cytotoxic to 

cancer cells as compared to normal cells; therefore, primary, normal fibroblasts, CCD-13Lu 

were included to demonstrate that the cytotoxicity observed following inhibition of STAT3 

was preferential to tumor cells and activated fibroblasts (Fig. 4D). After incubation for 72 h, 

PG-S3-001 severely impaired the growth of Pa03C and CAF19 cells, whereas the primary 

CCD-13Lu cell line retained 84% of its relative growth. Compared to parent compounds, 

PG-S3-001 exhibited superior efficacy (~10-fold) for mitigating growth of the patient 
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derived adenocarcinoma Pa03C cells. When comparing the three compounds in CAF19 

cells, the activity of PG-S3-001 is, within error, comparable to BP-1-102 and SH-4-54.

STAT3 inhibitors decrease STAT3 phosphorylation

Treatment with BP-1-102, SH-4-54, and PG-S3-001 inhibited phosphorylation of STAT3 at 

Y705 (Fig. 4E) as well as cellular proliferation in PDAC cells, CAFs, and co-cultures (Fig. 

4A–C). Inhibition of STAT3 activity correlated well to the amount of cell killing by our lead 

compounds. In Fig. 4E, concentration of parent compounds BP-1-102 and SH-4-54 was 10 

μM and PG-S3-001 was 5μM. The amount of inhibition of STAT3 activity via levels of p-

STAT3 correlated with the amount of cell killing of each of these compounds: PG-S3-001 > 

SH-4-54 > BP-1-102. PG-S3-001 can significantly inhibit dose-dependent activation of 

STAT3 at Y705 in two additional PDAC cell lines, established cell line MIA-PaCa-2 and low 

passage patient derived line Pa02C (Figure 4F, PaCa-2, p<0.05, comparing IL-6 control with 

5μM and p<0.01 with 10μM PG-S3-001 and Pa02C, p<0.01 (IL-6 control vs 5 μM and 

p<0.001 for IL-6 control vs 10μM). The activation of p-STAT3 is also dramatically blocked 

in the CAF cells as shown in Figure 4G. This blockade of STAT3 in the CAFs led to >60% 

down-regulation of STAT3 regulated gene, survivin in the CAF cells as well (p<0.01).

Lead compound PG-S3-001 does not significantly inhibit upstream kinases as assessed by 
a kinome screen

To probe for off-target effects, PG-S3-001 (5 μM concentration) was submitted to a kinome 

screen against 132 different kinases. PG-S3-001 exhibited minimal affinity for kinases 

directly involved in STAT3 phosphorylation. Only proto-oncogene SRC kinase was 

moderately inhibited (36 % inhibition at 5 μM, Supplementary Information, Table 1). These 

data further validated PG-S3-001 as a candidate for the 3D tumor model and in vivo efficacy 

studies.

Inhibition of p-STAT3 inhibits cell growth in three-dimensional culture systems

State-of-the-art three-dimensional (3D) culture systems (54) in the presence and absence of 

CAFs were utilized to further screen our lead compound for efficacy at killing PDAC cells. 

3D tumor-stromal cell-associated spheroid models (Fig. 5) include selective pressures akin 

to the TME which has several advantages over traditional monolayer cell culture (51, 52, 60, 

61). CAF cells isolated from a pancreatic cancer patient (62) were included to recapitulate a 

more accurate picture of cell-cell interactions in vivo (Fig. 5). Due to the importance of the 

stroma in this disease (51, 52), CAFs and tumor cells were labeled in order to assess which 

cell type in the 3D co-culture was most effected by STAT3 inhibition. As expected, co-

culture of CAFs with tumor cells increased the growth of tumor spheres (Fig. 5). Inhibition 

of p-STAT3 via BP-1-102, SH-4-54, and PG-S3-001 resulted in inhibition of growth in 3D 

as was also observed with monolayer cell cultures. Inhibition of STAT3 was found to 

effectively slow the growth rate of cells in a dose-dependent manner (Fig. 5A–C), with 

IC50’s ranging from ~15.2 – 27.0 μM in 3D culture and ~23.5 – 42.5 μM for 3D culture 

containing tumor and CAFs. As expected, PDAC cells grown in 3D as well as the addition 

of CAFs to the 3D cultures resulted in an increase in resistance to STAT3 inhibition. 

However, in this assay, PG-S3-001 (IC50 = 15.2 ± 2.0 μM, tumor and 23.5 ± 4.4 μM, co-

culture) was more potent than the parent compounds, even in the presence of stromal CAFs 
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(Fig. 5C). The data in Figure 5A–C was generated using a proliferation-based Alamar blue 

assay which provided reliable information about the effects of the compounds on the 

proliferation of both cell types but does not delineate which cell type was affected by 

inhibition of STAT3 activity. Therefore, we used two additional methods to quantitate and 

visualize the effects of PG-S3-001 on PDAC cells alone and in co-culture.

Two-dimensional projections of 3D images captured by ArrayScan high-content screening 

system were used to quantitate the area and relative intensity (RLU) of the red and green 

channels. Both the tumor cells alone and in co-culture are sensitive to the STAT3 inhibitor, 

PG-S3-001 as evidenced by a dose-dependent decrease in area and intensity (Figure 5D, E). 

As shown in Figure 5D, the area of the tumor spheroids is more dramatically affected by the 

PG-S3-001 compound than the area of the CAFs (p<0.01 comparing the area of the tumor to 

the area of the CAFs). The fluorescent intensity of both tumor cells and CAFs was decreased 

following treatment (Figure 5E). The CAFs provide significant protection to the tumor cells 

as there are significant differences between the tumor alone and the tumor in co-culture both 

in area and intensity (Figure 5D, E).

Confocal microscopy further demonstrates the decrease in viability of PDAC cells 
following p-STAT3 inhibition

Confocal microscopy confirms the results from the high content imaging system 

demonstrating enhanced effects of the PG-S3-001 STAT3 inhibitor on tumor proliferation 

(Figure 5F,G). At days 5 and 11 after treatment, confocal images were acquired to confirm 

the presence of both cell types in the spheres as well as the effects of PG-S3-001 on both cell 

types (Fig. 5F,G). At Day 11, transmitted light images were acquired simultaneously with 

confocal images. Both CAFs (green signal) and tumor cells (red signal) decreased following 

treatment with PG-S3-001, but tumor cell intensity was more drastically reduced at Day 5. 

Again, the confocal microscopy data confirmed that the tumor cells appeared to be more 

sensitive to the inhibition of STAT3 than the CAFs since EGFP fluorescence persists. Based 

on recent data, which suggests that depletion of the stroma in PDAC is not beneficial to the 

patient and can accelerate the disease (11, 12), it is important to understand the effects of p-

STAT3 inhibition in both cell types when they are co-cultured and interacting. When 

analyzed in 3D co-culture, encouragingly, based on EGFP fluorescent readout, the CAF cells 

are still present following treatment with STAT3 inhibitors (Fig. 5D–G), suggesting a 

promising selectivity profile. Since PG-S3-001 effectively inhibited p-STAT3 activity and 

blocked proliferation in traditional cell culture models, as well as in 3D models, PG-S3-001 

was next assessed in an in vivo model.

3D co-culture assay predicts the in vivo efficacy of a potent STAT3 inhibitor on pancreatic 
cancer xenografts

A patient-derived xenograft (PDX) model was utilized to demonstrate that STAT3 inhibitor, 

PG-S3-001 was effective as a single agent. After tumors from patient-derived cells, Pa03C 

reached an average of 71±4 mm3, treatment with PG-S3-001 was initiated (ip, 10 mg/kg). 

PG-S3-001 was not overly toxic to the animals as measured by weight loss (Fig. 6A). In 

contrast to vehicle-control tumors, patient-derived xenografts demonstrated a significant 

tumor growth delay (54–62 %) after treatment with PG-S3-001 for 15 days (Fig. 6B). To 
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further confirm the mechanism of action of PG-S3-001, immunohistochemistry was 

conducted to quantitate the levels of activated STAT3 (p-Y705) and found a 45 % reduction 

in the levels of activated STAT3 following treatment with PG-S3-001 (Fig. 6C). The tumor 

growth delay also resulted in a significantly smaller tumor weight. Tumor weight was 36 % 

lower in PG-S3-001-treated mice compared to vehicle-treated mice when weighed at the 

conclusion of the study (Fig. 6D). The antitumor effect is at least partially due to a reduction 

in cell proliferation as we observed a significant decrease in phospho-histone H3, a marker 

of mitotic cells (63) in tumors treated with PG-S3-001. The preclinical results suggested that 

targeting STAT3 in PDAC might have clinical efficacy and further confirmed that the 3D co-

culture model is predictive of in vivo efficacy.

Discussion

Novel models were used to characterize a new class of STAT3 inhibitors, including low 

passage patient-derived cells and 3D co-culture systems to address the role of the TME. 3D 

tumor-stromal cell-associated spheroid models in Figure 5 include both tumor and CAFs to 

better model PDAC in vitro. This has several advantages over traditional monolayer cell 

culture (51, 52, 60, 61). Monolayers are grown on stiff polystyrene plastic, while 3D culture 

systems are grown as floating tumor spheroids allowing for diffusion of nutrients similar to 

human tumors (54). Additionally, spheroids provide a more accurate portrayal of tumors in 
vivo due to the altered proliferation and morphology in 3D and the increased length of time 

for culturing when compared to traditional monolayer techniques. CAF cells from the TME 

were included to recapitulate a more accurate picture of cell-cell interactions in vivo (Fig. 5). 

The sensitivity of CAF cells to STAT3 inhibition was similar to tumor cells in monolayer; 

however, in 3D co-culture we observed promising selectivity for inhibition of tumor cell 

proliferation that again speaks to the relevance of the in vitro 3D model.

In summary, we have reported the use of a low μM p-STAT3 inhibitor to selectively target 

patient-derived pancreatic cancer cells in the presence of CAFs, and provided preliminary 

preclinical evidence to suggest that p-STAT3 inhibition might afford an effective therapy for 

pancreatic cancer patients. While more potent and selective p-STAT3 inhibitors are required 

to realize this goal, the described 3D PDAC tumor model provides a more realistic model of 

the disease for screening potential STAT3 inhibitors. For example, in co-culture with CAFs, 

compound activity, relative to that observed in monolayer PDAC cell culture, drops 

significantly. Thus, inhibitors that can selectively target 3D PDAC tumor cells in stroma will 

likely have better efficacy in preclinical models. As demonstrated, this 3D model approach 

will serve as a most useful screening tool as we seek to discover new and more effective 

regimens for treating pancreatic cancer.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Structure of lead STAT3 inhibitors: PG-S3-001, PG-S3-002, and PG-S3-003. (B) Top 

compounds were screened and compared to parent compounds, BP-1-102 and SH4-54, Avg 

± SE, n=4–5. (C) Bar graph of ED50s for comparison with new STAT3 inhibitors, Avg±SE, 

n=4–5.

Arpin et al. Page 17

Mol Cancer Ther. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
(A) Computational modeling of PG-S3-001 to the SH2 domain of STAT3: analysis of 

ligand-receptor interaction. (B) Two-dimensional interaction map highlighting small 

molecule-receptor interaction of lead compound PG-S3-001.
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Figure 3. 
(A) Fluorescence Polarization (FP) competition assay curves for PG-S3-001, PG-S3-002, 

PG-S3-003. (B) Surface Plasmon Resonance (SPR) curves displaying the binding affinity 

for PG-S3-001 and PG-S3-002.

Arpin et al. Page 19

Mol Cancer Ther. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Lead STAT3 inhibitor, PG-S3-001 effectively disrupts PDAC and CAF cell survival and 

proliferation individually and in co-culture, but does not affect primary fibroblasts at the 

doses tested. Dose response curves for lead inhibitor in comparison to parent compounds 

following 72 hr treatment in low passage patient derived cells, Pa03C (A) CAF19 cells (B) 

or in the co-culture (2:1 tumor:CAFs, (C) using Alamar blue assay, Avg+SE, n=3–4. (D) 

Comparison of cytotoxicity in tumor, CAFs, and primary lung fibroblasts of STAT3 

inhibitors at the following concentrations: BP-1-102 25μM, SH4-054 12.5μM, and PG-

S3-001 6.25μM for 72 hr. Fold change refers to the comparison of each data point to the 

fluorescence reading of the untreated control. E–G: Immunoblots of whole cells extracts 

following 4hr pre-treatment with BP-1-102 and SH4-54 (10 μM) and PG-S3-001 (5 μM) in 

Pa03C cells stimulated with IL-6 (25 ng/mL, 15 min) (E), PDAC cells, PaCa-2 and Pa02C 

pretreated with increasing amounts of PG-S3-001 for 4 hr and then stimulated with IL-6 

(p<0.05 for IL-6-treated control vs PG-S3-001 treated cells) (F), and CAF19 cells (G).
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Figure 5. 
Inhibition of STAT3 by PG-S3-001 inhibits cell growth in three-dimensional culture systems 

using proliferation-based assays and confocal microscopy. (A–C) Proliferation assays for 

lead inhibitor (C) in comparison to parent compounds (A, B) following 12 days in 3D 

culture. Low passage patient derived spheres, Pa03C (grey bars) or the co-culture spheres 

(black bars, 1:4 tumor:CAFs) were quantitated using Alamar blue assay, Avg+SE, n=3–4, 

**p<0.01, #p<0.001 compared to DMSO vehicle control. Quantitation of the images 

acquired by ArrayScan automated imaging system for the area (D) and the intensity (E) of 

the red channel and the green channel corresponding to the tumor and the CAFs, 

respectively. Fold change refers to the comparison of each data point to the fluorescence 

(RLU) /area of the untreated tumor alone culture. Avg+SE, n=4, * p<0.05, **p<0.01, 

#p<0.001. 3D reconstruction of images acquired on Day 5 (F) and Day 11 (G) following 

treatment on Day 3 and 7 of 3D co-cultures with PG-S3-001.
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Figure 6. 
Significant growth delay on pancreatic cancer xenografts with lead STAT3 inhibitor. NSG 

mice were implanted with patient-derived cells Pa03C and treated with 10 mg/kg PG-S3-001 

for 15 days. There was significant growth delay in the tumors by volume (B) and weight (D) 

with acceptable body weight loss (A), * p<0.05, **p<0.01, #p<0.001, n=18 for vehicle 

control treated tumors and n=16 for PG-S3-001. Levels of p-STAT3 (Y705, C) and p-

Histone H3 (E, p<0.05) were also reduced in the tumors following treatment with STAT3 

inhibitor.
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