477 research outputs found

    Psychological morbidity, sources of stress and coping strategies among undergraduate medical students of Nepal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years there has been a growing appreciation of the issues of quality of life and stresses involved medical training as this may affect their learning and academic performance. However, such studies are lacking in medical schools of Nepal. Therefore, we carried out this study to assess the prevalence of psychological morbidity, sources and severity of stress and coping strategies among medical students in our integrated problem-stimulated undergraduate medical curriculum.</p> <p>Methods</p> <p>A cross-sectional, questionnaire-based survey was carried out among the undergraduate medical students of Manipal College of Medical Sciences, Pokhara, Nepal during the time period August, 2005 to December, 2006. The psychological morbidity was assessed using General Health Questionnaire. A 24-item questionnaire was used to assess sources of stress and their severity. Coping strategies adopted was assessed using brief COPE inventory.</p> <p>Results</p> <p>The overall response rate was 75.8% (407 out of 525 students). The overall prevalence of psychological morbidity was 20.9% and was higher among students of basic sciences, Indian nationality and whose parents were medical doctors. By logistic regression analysis, GHQ-caseness was associated with occurrence of academic and health-related stressors. The most common sources of stress were related to academic and psychosocial concerns. The most important and severe sources of stress were staying in hostel, high parental expectations, vastness of syllabus, tests/exams, lack of time and facilities for entertainment. The students generally used active coping strategies and alcohol/drug was a least used coping strategy. The coping strategies commonly used by students in our institution were positive reframing, planning, acceptance, active coping, self-distraction and emotional support. The coping strategies showed variation by GHQ-caseness, year of study, gender and parents' occupation.</p> <p>Conclusion</p> <p>The higher level of psychological morbidity warrants need for interventions like social and psychological support to improve the quality of life for these medical students. Student advisors and counselors may train students about stress management. There is also need to bring about academic changes in quality of teaching and evaluation system. A prospective study is necessary to study the association of psychological morbidity with demographic variables, sources of stress and coping strategies.</p

    A novel long non-coding natural antisense RNA is a negative regulator of Nos1 gene expression

    Get PDF
    Long non-coding natural antisense transcripts (NATs) are widespread in eukaryotic species. Although recent studies indicate that long NATs are engaged in the regulation of gene expression, the precise functional roles of the vast majority of them are unknown. Here we report that a long NAT (Mm-antiNos1 RNA) complementary to mRNA encoding the neuronal isoform of nitric oxide synthase (Nos1) is expressed in the mouse brain and is transcribed from the non-template strand of the Nos1 locus. Nos1 produces nitric oxide (NO), a major signaling molecule in the CNS implicated in many important functions including neuronal differentiation and memory formation. We show that the newly discovered NAT negatively regulates Nos1 gene expression. Moreover, our quantitative studies of the temporal expression profiles of Mm-antiNos1 RNA in the mouse brain during embryonic development and postnatal life indicate that it may be involved in the regulation of NO-dependent neurogenesis

    Serologic testing for symptomatic coccidioidomycosis in immunocompetent and immunosuppressed hosts

    Get PDF
    Serologic studies are an important diagnostic tool in the clinical evaluation and follow-up of persons with coccidioidomycosis. Numerous types of serologic tests are available, including immunodiffusion, enzyme immunoassay, and complement fixation. We conducted a retrospective review of the results of 1,797 serologic tests spanning 12 months from the onset of coccidioidomycosis in 298 immunocompetent and 62 immunosuppressed persons with symptomatic infection. Using the onset of symptoms as a reference point, we plotted the positive or negative serologic results over time for both groups. Compared with the immunocompetent group, immunosuppressed persons had lower rates of seropositivity for every type of test during the first year after onset of symptoms for coccidioidomycosis, although many results did not achieve statistical significance. Combining the results of these tests increased the sensitivity of the serologic evaluation in immunocompromised patients. Immunosuppressed persons have the ability to mount a serologic response to coccidioidomycosis, but in some circumstances, multiple methods may be required to improve detection

    The Cyprinodon variegatus genome reveals gene expression changes underlying differences in skull morphology among closely related species

    Get PDF
    Genes in durophage intersection set at 15 dpf. This is a comma separated table of the genes in the 15 dpf durophage intersection set. Given are edgeR results for each pairwise comparison. Columns indicating whether a gene is included in the intersection set at a threshold of 1.5 or 2 fold are provided. (CSV 13 kb

    A fresh look at the evolution and diversification of photochemical reaction centers

    Get PDF
    In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers

    Small Interfering RNA Targeting M2 Gene Induces Effective and Long Term Inhibition of Influenza A Virus Replication

    Get PDF
    RNA interference (RNAi) provides a powerful new means to inhibit viral infection specifically. However, the selection of siRNA-resistant viruses is a major concern in the use of RNAi as antiviral therapeutics. In this study, we conducted a lentiviral vector with a H1-short hairpin RNA (shRNA) expression cassette to deliver small interfering RNAs (siRNAs) into mammalian cells. Using this vector that also expresses enhanced green fluorescence protein (EGFP) as surrogate marker, stable shRNA-expressing cell lines were successfully established and the inhibition efficiencies of rationally designed siRNAs targeting to conserved regions of influenza A virus genome were assessed. The results showed that a siRNA targeting influenza M2 gene (siM2) potently inhibited viral replication. The siM2 was not only effective for H1N1 virus but also for highly pathogenic avian influenza virus H5N1. In addition to its M2 inhibition, the siM2 also inhibited NP mRNA accumulation and protein expression. A long term inhibition effect of the siM2 was demonstrated and the emergence of siRNA-resistant mutants in influenza quasispecies was not observed. Taken together, our study suggested that M2 gene might be an optimal RNAi target for antiviral therapy. These findings provide useful information for the development of RNAi-based prophylaxis and therapy for human influenza virus infection

    The Dynamics of EBV Shedding Implicate a Central Role for Epithelial Cells in Amplifying Viral Output

    Get PDF
    To develop more detailed models of EBV persistence we have studied the dynamics of virus shedding in healthy carriers. We demonstrate that EBV shedding into saliva is continuous and rapid such that the virus level is replaced in ≤2 minutes, the average time that a normal individual swallows. Thus, the mouth is not a reservoir of virus but a conduit through which a continuous flow stream of virus passes in saliva. Consequently, virus is being shed at a much higher rate than previously thought, a level too high to be accounted for by replication in B cells in Waldeyer's ring alone. Virus shedding is relatively stable over short periods (hours-days) but varies through 3.5 to 5.5 logs over longer periods, a degree of variation that also cannot be accounted for solely by replication in B cells. This variation means, contrary to what is generally believed, that the definition of high and low shedder is not so much a function of variation between individuals but within individuals over time. The dynamics of shedding describe a process governing virus production that is occurring independently ≤3 times at any moment. This process grows exponentially and is then randomly terminated. We propose that these dynamics are best explained by a model where single B cells sporadically release virus that infects anywhere from 1 to 5 epithelial cells. This infection spreads at a constant exponential rate and is terminated randomly, resulting in infected plaques of epithelial cells ranging in size from 1 to 105 cells. At any one time there are a very small number (≤3) of plaques. We suggest that the final size of these plaques is a function of the rate of infectious spread within the lymphoepithelium which may be governed by the structural complexity of the tissue but is ultimately limited by the immune response

    Premenstrual enhancement of snake detection in visual search in healthy women

    Get PDF
    It is well known that adult humans detect images of snakes as targets more quickly than images of flowers as targets whether the images are in color or gray-scale. When such visual searches were performed by a total of 60 adult premenopausal healthy women in the present study to examine whether their performance would fluctuate across the phases of the menstrual cycle, snake detection was found to become temporarily enhanced during the luteal phase as compared to early or late follicular phases. This is the first demonstration of the existence of within-individual variation of the activity of the fear module, as a predictable change in cognitive strength, which appears likely to be due to the hormonal changes that occur in the menstrual cycle of healthy women

    Genetic Engineering of Trypanosoma (Dutonella) vivax and In Vitro Differentiation under Axenic Conditions

    Get PDF
    Trypanosoma vivax is one of the most common parasites responsible for animal trypanosomosis, and although this disease is widespread in Africa and Latin America, very few studies have been conducted on the parasite's biology. This is in part due to the fact that no reproducible experimental methods had been developed to maintain the different evolutive forms of this trypanosome under laboratory conditions. Appropriate protocols were developed in the 1990s for the axenic maintenance of three major animal Trypanosoma species: T. b. brucei, T. congolense and T. vivax. These pioneer studies rapidly led to the successful genetic manipulation of T. b. brucei and T. congolense. Advances were made in the understanding of these parasites' biology and virulence, and new drug targets were identified. By contrast, challenging in vitro conditions have been developed for T. vivax in the past, and this per se has contributed to defer both its genetic manipulation and subsequent gene function studies. Here we report on the optimization of non-infective T. vivax epimastigote axenic cultures and on the process of parasite in vitro differentiation into metacyclic infective forms. We have also constructed the first T. vivax specific expression vector that drives constitutive expression of the luciferase reporter gene. This vector was then used to establish and optimize epimastigote transfection. We then developed highly reproducible conditions that can be used to obtain and select stably transfected mutants that continue metacyclogenesis and are infectious in immunocompetent rodents
    corecore