134 research outputs found

    On the missing 2175 Angstroem-bump in the Calzetti extinction curve

    Full text link
    The aim of the paper is to give a physical explanation of the absence of the feature in the Calzetti extinction curve. We analyze the dust attenuation of a homogeneous source seen through a distant inhomogeneous distant screen. The inhomogeneities are described through an idealized isothermal turbulent medium where the probability distribution function (PDF) of the column density is log-normal. In addition it is assumed that below a certain critical column density the carriers of the extinction bump at 2175 Angstroem are being destroyed by the ambient UV radiation field. Turbulence is found to be a natural explanation not only of the flatter curvature of the Calzetti extinction curve but also of the missing bump provided the critical column density is N_H >= 10^21 cm^-2. The density contrast needed to explain both characteristics is well consistent with the Mach number of the cold neutral medium of our own Galaxy which suggests a density contrast sigma_(rho/) 6.Comment: 6 pages, 6 figures accepted for publication in A&A, section

    On the thermal behaviour of small iron grains

    Full text link
    The optical properties of small spherical iron grains are derived using a Kramers-Kronig-consistent model of the dielectric function including its dependence on temperature and size. Especially discussed is the effect of the size dependence, which results from the limitation of the free path of the free electrons in the metal by the size of the grain, on the absorption behaviour of small iron spheres and spheroids. The estimated absorption properties are applied to study the temperature behaviour of spherical and spheroidal grains which are heated by the interstellar radiation field.Comment: 12 pages, 16 figure

    Modelling the Pan-Spectral Energy Distributions of Starburst & Active Galaxies

    Full text link
    We present results of a self-consistent model of the spectral energy distribution (SED) of starburst galaxies. Two parameters control the IR SED, the mean pressure in the ISM and the destruction timescale of molecular clouds. Adding a simplified AGN spectrum provides mixing lines on IRAS color : color diagrams. This reproduces the observed colors of both AGNs and starbursts.Comment: Poster Paper for IAU 222: The Interplay among Black Holes, Stars and ISM in Galactic Nucle

    Physical properties of interstellar filaments

    Full text link
    We analyze the physical parameters of interstellar filaments that we describe by an idealized model of isothermal self-gravitating infinite cylinder in pressure equilibrium with the ambient medium. Their gravitational state is characterized by the ratio f_cyl of their mass line density to the maximum possible value for a cylinder in a vacuum. Equilibrium solutions exist only for f_cyl < 1. This ratio is used in providing analytical expressions for the central density, the radius, the profile of the column density, the column density through the cloud centre, and the fwhm. The dependence of the physical properties on external pressure and temperature is discussed and directly compared to the case of pressure-confined isothermal self-gravitating spheres. Comparison with recent observations of the fwhm and the central column density N_H(0) show good agreement and suggest a filament temperature of ~10 K and an external pressure p_ext/k in the range 1.5x10^4 K/cm^3 to 5x10^4 K/cm^3. Stability considerations indicate that interstellar filaments become increasingly gravitationally unstable with mass line ratio f_cyl approaching unity. For intermediate f_cyl>0.5 the instabilities should promote core formation through compression, with a separation of about five times the fwhm. We discuss the nature of filaments with high mass line densities and their relevance to gravitational fragmentation and star formation.Comment: 18 pages, 12 figures accepted for publication (13/4/2012

    Modelling the spectral energy distribution of galaxies. I. Radiation fields and grain heating in the edge-on spiral NGC891

    Get PDF
    We describe a new tool for the analysis of the UV to the sub-millimeter (sub-mm) spectral energy distribution (SED) of spiral galaxies. We use a consistent treatment of grain heating and emission, solve the radiation transfer problem for a finite disk and bulge, and self-consistently calculate the stochastic heating of grains placed in the resulting radiation field. We use this tool to analyse the well-studied nearby edge- on spiral galaxy NGC 891. First we investigate whether the old stellar population in NGC 891, along with a reasonable assumption about the young stellar population, can account for the heating of the dust and the observed far-infrared and sub- mm emission. The dust distribution is taken from the model of Xilouris et al. (1999), who used only optical and near-infrared observations to determine it. We have found that such a simple model cannot reproduce the SED of NGC 891, especially in the sub-mm range. It underestimates by a factor of 2–4 the observed sub-mm flux. A number of possible explanations exist for the missing sub-mm flux. We investigate a few of them and demonstrate that one can reproduce the observed SED in the far-infrared and the sub-mm quite well, as well as the observed radial profile at 850 µm. For the models calculated we give the relative proportion of the dust radiation powered by the old and young stellar popula- tions as a function of FIR/sub-mm wavelength. In all models we find that the dust is predominantly heated by the young stellar population

    The dust emission SED of X-ray emitting regions in Stephan's Quintet

    Get PDF
    We analysed the Spitzer maps of Stephan's Quintet in order to investigate the nature of the dust emission associated with the X-ray emitting regions of the large scale intergalactic shock and of the group halo. This emission can in principle be powered by dust-gas particle collisions, thus providing efficient cooling of the hot gas. However the results of our analysis suggest that the dust emission from those regions is mostly powered by photons. Nonetheless dust collisional heating could be important in determining the cooling of the IGM gas and the large scale star formation morphology observed in SQ.Comment: Conference proceedings IAU Symposium 284 "The Spectral energy distribution of galaxies", 5-9 September 2011, Preston, U

    Dust in dwarf galaxies: The case of NGC 4214

    Get PDF
    We have carried out a detailed modelling of the dust heating and emission in the nearby, starbursting dwarf galaxy NGC 4214. Due to its proximity and the great wealth of data from the UV to the millimeter range (from GALEX, HST, {\it Spitzer}, Herschel, Planck and IRAM) it is possible to separately model the emission from HII regions and their associated photodissociation regions (PDRs) and the emission from diffuse dust. Furthermore, most model parameters can be directly determined from the data leaving very few free parameters. We can fit both the emission from HII+PDR regions and the diffuse emission in NGC 4214 with these models with "normal" dust properties and realistic parameters.Comment: 4pages, 3 figures. To appear in 'The Spectral Energy Distribution of Galaxies' Proceedings IAU Symposium No 284, 201

    The star formation efficiency in Stephan's Quintet intragroup regions

    Get PDF
    We investigated the star formation efficiency for all the dust emitting sources in Stephan's Quintet (SQ). We inferred star formation rates using Spitzer MIR/FIR and GALEX FUV data and combined them with gas column density measurements by various authors, in order to position each source in a Kennicutt-Schmidt diagram. Our results show that the bright IGM star formation regions in SQ present star formation efficiencies consistent with those observed within local galaxies. On the other hand, star formation in the intergalactic shock region seems to be rather inhibited.Comment: Conference proceedings "Galaxy Mergers in an evolving Universe", 23-28 October 2011, Hualien, Taiwa

    High Resolution mid-Infrared Imaging of SN 1987A

    Full text link
    Using the Thermal-Region Camera and Spectrograph (T-ReCS) attached to the Gemini South 8m telescope, we have detected and resolved 10 micron emission at the position of the inner equatorial ring (ER) of supernova SN 1987A at day 6067. ``Hot spots'' similar to those found in the optical and near-IR are clearly present. The morphology of the 10 micron emission is globally similar to the morphology at other wavelengths from X-rays to radio. The observed mid-IR flux in the region of SN1987A is probably dominated by emission from dust in the ER. We have also detected the ER at 20 micron at a 4 sigma level. Assuming that thermal dust radiation is the origin of the mid-IR emission, we derive a dust temperature of 180^{+20}_{-10} K, and a dust mass of 1.- 8. 10^{-5} Mo for the ER. Our observations also show a weak detection of the central ejecta at 10 micron. We show that previous bolometric flux estimates (through day 2100) were not significantly contaminated by this newly discovered emission from the ER. If we assume that the energy input comes from radioactive decays only, our measurements together with the current theoretical models set a temperature of 90 leq T leq 100 K and a mass range of 10^{-4} - 2. 10^{-3} Mo for the dust in the ejecta. With such dust temperatures the estimated thermal emission is 9(+/-3) 10^{35} erg s^{-1} from the inner ring, and 1.5 (+/-0.5) 10^{36} erg s^{-1} from the ejecta. Finally, using SN 1987A as a template, we discuss the possible role of supernovae as major sources of dust in the Universe.Comment: aastex502, 14 pages, 4 figures; Accepted for publication in ApJ Content changed: new observations, Referee's comments and suggestion
    • …
    corecore