22 research outputs found

    Controlling Network Latency in Mixed Hadoop Clusters: Do We Need Active Queue Management?

    Get PDF
    With the advent of big data, data center applications are processing vast amounts of unstructured and semi-structured data, in parallel on large clusters, across hundreds to thousands of nodes. The highest performance for these batch big data workloads is achieved using expensive network equipment with large buffers, which accommodate bursts in network traffic and allocate bandwidth fairly even when the network is congested. Throughput-sensitive big data applications are, however, often executed in the same data center as latency-sensitive workloads. For both workloads to be supported well, the network must provide both maximum throughput and low latency. Progress has been made in this direction, as modern network switches support Active Queue Management (AQM) and Explicit Congestion Notifications (ECN), both mechanisms to control the level of queue occupancy, reducing the total network latency. This paper is the first study of the effect of Active Queue Management on both throughput and latency, in the context of Hadoop and the MapReduce programming model. We give a quantitative comparison of four different approaches for controlling buffer occupancy and latency: RED and CoDel, both standalone and also combined with ECN and DCTCP network protocol, and identify the AQM configurations that maintain Hadoop execution time gains from larger buffers within 5%, while reducing network packet latency caused by bufferbloat by up to 85%. Finally, we provide recommendations to administrators of Hadoop clusters as to how to improve latency without degrading the throughput of batch big data workloads.The research leading to these results has received funding from the European Unions Seventh Framework Programme (FP7/2007–2013) under grant agreement number 610456 (Euroserver). The research was also supported by the Ministry of Economy and Competitiveness of Spain under the contracts TIN2012-34557 and TIN2015-65316-P, Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), HiPEAC-3 Network of Excellence (ICT- 287759), and the Severo Ochoa Program (SEV-2011-00067) of the Spanish Government.Peer ReviewedPostprint (author's final draft

    Interconnect Energy Savings and Lower Latency Networks in Hadoop Clusters: The Missing Link

    Get PDF
    An important challenge of modern data centres running Hadoop workloads is to minimise energy consumption, a significant proportion of which is due to the network. Significant network savings are already possible using Energy Efficient Ethernet, supported by a large number of NICs and switches, but recent work has demonstrated that the packet coalescing settings must be carefully configured to avoid a substantial loss in performance. Meanwhile, Hadoop is evolving from its original batch concept to become a more iterative type of framework. Other recent work attempts to reduce Hadoop's network latency using Explicit Congestion Notifications. Linking these studies reveals that, surprisingly, even when packet coalescing does not hurt performance, it can degrade network latency much more than previously thought. This paper is the first to analyze the impact of packet coalescing in the context of network latency. We investigate how to design and configure interconnects to provide the maximum energy savings without degrading cluster throughput performance or network latency.The research leading to these results has received funding from the European Unions Seventh Framework Programme (FP7/2007–2013) under grant agreement number 610456 (Euroserver). The research was also supported by the Ministry of Economy and Competitiveness of Spain under the contracts TIN2012-34557 and TIN2015-65316-P, Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), HiPEAC-3 Network of Excellence (ICT- 287759), and the Severo Ochoa Program (SEV-2011-00067) of the Spanish Government.Peer ReviewedPostprint (author's final draft

    E-EON : Energy-Efficient and Optimized Networks for Hadoop

    Get PDF
    Energy efficiency and performance improvements have been two of the major concerns of current Data Centers. With the advent of Big Data, more information is generated year after year, and even the most aggressive predictions of the largest network equipment manufacturer have been surpassed due to the non-stop growing network traffic generated by current Big Data frameworks. As, currently, one of the most famous and discussed frameworks designed to store, retrieve and process the information that is being consistently generated by users and machines, Hadoop has gained a lot of attention from the industry in recent years and presently its name describes a whole ecosystem designed to tackle the most varied requirements of today’s cloud applications. This thesis relates to Hadoop clusters, mainly focused on their interconnects, which is commonly considered to be the bottleneck of such ecosystem. We conducted research focusing on energy efficiency and also on performance optimizations as improvements on cluster throughput and network latency. Regarding the energy consumption, a significant proportion of a data center's energy consumption is caused by the network, which stands for 12% of the total system power at full load. With the non-stop growing network traffic, it is desired by industry and academic community that network energy consumption should be proportional to its utilization. Considering cluster performance, although Hadoop is a network throughput-sensitive workload with less stringent requirements for network latency, there is an increasing interest in running batch and interactive workloads concurrently on the same cluster. Doing so maximizes system utilization, to obtain the greatest benefits from the capital and operational expenditures. For this to happen, cluster throughput should not be impacted when network latency is minimized. The two biggest challenges faced during the development of this thesis were related to achieving near proportional energy consumption for the interconnects and also improving the network latency found on Hadoop clusters, while having virtually no loss on cluster throughput. Such challenges led to comparable sized opportunity: proposing new techniques that must solve such problems from the current generation of Hadoop clusters. We named E-EON the set of techniques presented in this work, which stands for Energy Efficient and Optimized Networks for Hadoop. E-EON can be used to reduce the network energy consumption and yet, to reduce network latency while cluster throughput is improved at the same time. Furthermore, such techniques are not exclusive to Hadoop and they are also expected to have similar benefits if applied to any other Big Data framework infrastructure that fits the problem characterization we presented throughout this thesis. With E-EON we were able to reduce the energy consumption by up to 80% compared to the state-of-the art technique. We were also able to reduce network latency by up to 85% and in some cases, even improve cluster throughput by 10%. Although these were the two major accomplishment from this thesis, we also present minor benefits which translate to easier configuration compared to the stat-of-the-art techniques. Finally, we enrich the discussions found in this thesis with recommendations targeting network administrators and network equipment manufacturers.La eficiencia energética y las mejoras de rendimiento han sido dos de las principales preocupaciones de los Data Centers actuales. Con el arribo del Big Data, se genera más información año con año, incluso las predicciones más agresivas de parte del mayor fabricante de dispositivos de red se han superado debido al continuo tráfico de red generado por los sistemas de Big Data. Actualmente, uno de los más famosos y discutidos frameworks desarrollado para almacenar, recuperar y procesar la información generada consistentemente por usuarios y máquinas, Hadoop acaparó la atención de la industria en los últimos años y actualmente su nombre describe a todo un ecosistema diseñado para abordar los requisitos más variados de las aplicaciones actuales de Cloud Computing. Esta tesis profundiza sobre los clusters Hadoop, principalmente enfocada a sus interconexiones, que comúnmente se consideran el cuello de botella de dicho ecosistema. Realizamos investigaciones centradas en la eficiencia energética y también en optimizaciones de rendimiento como mejoras en el throughput de la infraestructura y de latencia de la red. En cuanto al consumo de energía, una porción significativa de un Data Center es causada por la red, representada por el 12 % de la potencia total del sistema a plena carga. Con el tráfico constantemente creciente de la red, la industria y la comunidad académica busca que el consumo energético sea proporcional a su uso. Considerando las prestaciones del cluster, a pesar de que Hadoop mantiene una carga de trabajo sensible al rendimiento de red aunque con requisitos menos estrictos sobre la latencia de la misma, existe un interés creciente en ejecutar aplicaciones interactivas y secuenciales de manera simultánea sobre dicha infraestructura. Al hacerlo, se maximiza la utilización del sistema para obtener los mayores beneficios al capital y gastos operativos. Para que esto suceda, el rendimiento del sistema no puede verse afectado cuando se minimiza la latencia de la red. Los dos mayores desafíos enfrentados durante el desarrollo de esta tesis estuvieron relacionados con lograr un consumo energético cercano a la cantidad de interconexiones y también a mejorar la latencia de red encontrada en los clusters Hadoop al tiempo que la perdida del rendimiento de la infraestructura es casi nula. Dichos desafíos llevaron a una oportunidad de tamaño semejante: proponer técnicas novedosas que resuelven dichos problemas a partir de la generación actual de clusters Hadoop. Llamamos a E-EON (Energy Efficient and Optimized Networks) al conjunto de técnicas presentadas en este trabajo. E-EON se puede utilizar para reducir el consumo de energía y la latencia de la red al mismo tiempo que el rendimiento del cluster se mejora. Además tales técnicas no son exclusivas de Hadoop y también se espera que tengan beneficios similares si se aplican a cualquier otra infraestructura de Big Data que se ajuste a la caracterización del problema que presentamos a lo largo de esta tesis. Con E-EON pudimos reducir el consumo de energía hasta en un 80% en comparación con las técnicas encontradas en la literatura actual. También pudimos reducir la latencia de la red hasta en un 85% y, en algunos casos, incluso mejorar el rendimiento del cluster en un 10%. Aunque estos fueron los dos principales logros de esta tesis, también presentamos beneficios menores que se traducen en una configuración más sencilla en comparación con las técnicas más avanzadas. Finalmente, enriquecimos las discusiones encontradas en esta tesis con recomendaciones dirigidas a los administradores de red y a los fabricantes de dispositivos de red

    High Throughput and Low Latency on Hadoop Clusters Using Explicit Congestion Notification: The Untold Truth

    Get PDF
    Various extensions of TCP/IP have been proposed to reduce network latency; examples include Explicit Congestion Notification (ECN), Data Center TCP (DCTCP) and several proposals for Active Queue Management (AQM). Combining these techniques requires adjusting various parameters, and recent studies have found that it is difficult to do so while obtaining both high performance and low latency. This is especially true for mixed use data centres that host both latency-sensitive applications and high-throughput workloads such as Hadoop.This paper studies the difficulty in configuration, and characterises the problem as related to ACK packets. Such packets cannot be set as ECN Capable Transport (ECT), with the consequence that a disproportionate number of them are dropped. We explain how this behavior decreases throughput, and propose a small change to the way that non-ECT-capable packets are handled in the network switches. We demonstrate robust performance for modified AQMs on a Hadoop cluster, maintaining full throughput while reducing latency by 85%. We also demonstrate that commodity switches with shallow buffers are able to reach the same throughput as deeper buffer switches. Finally, we explain how both TCP-ECN and DCTCP can achieve the best performance using a simple marking scheme, in constrast to the current preference for relying on AQMs to mark packets.The research leading to these results has received funding from the European Unions Seventh Framework Programme (FP7/2007–2013) under grant agreement number 610456 (Euroserver). The research was also supported by the Ministry of Economy and Competitiveness of Spain under the contracts TIN2012-34557 and TIN2015-65316-P, Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), HiPEAC-3 Network of Excellence (ICT- 287759), and the Severo Ochoa Program (SEV-2011-00067) of the Spanish Government.Peer ReviewedPostprint (author's final draft

    Exploring interconnect energy savings under East-West traffic pattern of MapReduce clusters

    Get PDF
    An important challenge of modern data centers is to reduce energy consumption, of which a substantial proportion is due to the network. Energy Efficient Ethernet (EEE) is a recent standard that aims to reduce network power consumption, but current practice is to disable it in production use, since it has a poorly understood impact on real world application performance. An important application framework commonly used in modern data centers is Apache Hadoop, which implements the MapReduce programming model. This paper is the first to analyse the impact of EEE on MapReduce workloads, in terms of performance overheads and energy savings. We find that optimum energy savings are possible if the links use packet coalescing. Packet coalescing must, however, be carefully configured in order to avoid excessive performance degradation.The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007–2013) under grant agreement number 610456 (Euroserver). The research was also supported by the Ministry of Economy and Competitiveness of Spain under the contract TIN2012-34557, HiPEAC-3 Network of Excellence (ICT-287759), and the Severo Ochoa Program (SEV-2011-00067) of the Spanish Government.Postprint (author's final draft

    Energy Efficient Ethernet on MapReduce Clusters: Packet Coalescing To Improve 10GbE Links

    Get PDF
    An important challenge of modern data centers is to reduce energy consumption, of which a substantial proportion is due to the network. Switches and NICs supporting the recent energy efficient Ethernet (EEE) standard are now available, but current practice is to disable EEE in production use, since its effect on real world application performance is poorly understood. This paper contributes to this discussion by analyzing the impact of EEE on MapReduce workloads, in terms of performance overheads and energy savings. MapReduce is the central programming model of Apache Hadoop, one of the most widely used application frameworks in modern data centers. We find that, while 1GbE links (edge links) achieve good energy savings using the standard EEE implementation, optimum energy savings in the 10 GbE links (aggregation and core links) are only possible, if these links employ packet coalescing. Packet coalescing must, however, be carefully configured in order to avoid excessive performance degradation. With our new analysis of how the static parameters of packet coalescing perform under different cluster loads, we were able to cover both idle and heavy load periods that can exist on this type of environment. Finally, we evaluate our recommendation for packet coalescing for 10 GbE links using the energy-delay metric. This paper is an extension of our previous work [1], which was published in the Proceedings of the 40th Annual IEEE Conference on Local Computer Networks (LCN 2015).This work was supported in part by the European Union’s Seventh Framework Programme (FP7/2007-2013) under Grant 610456 (EUROSERVER), in part by the Spanish Government through the Severo Ochoa programme (SEV-2011-00067 and SEV-2015-0493), in part by the Spanish Ministry of Economy a nd Competitiveness under Contract TIN2012-34557 and Contract TIN2015-65316-P, and in part by the Generalitat de Catalunya under Contract 2014-SGR-1051 and Contract 2014-SGR-1272.Peer ReviewedPostprint (author's final draft

    Sistemas de gerenciamento de chaves públicas baseado em virtualização para redes AD HOC móveis

    Get PDF
    Resumo: MANETs (Mobile Ad Hoc Networks) são redes sem fio e sem infra-estrutura estabelecidas dinamicamente, sem a necessidade de uma administração centralizada. Devido ao roteamento distribuído nessas redes e ao meio de comunicação sem fio redes Ad Hoc podem apresentar todos os problemas de segurança existentes em redes convencionais e ainda novos desafios. O uso de criptografia é a principal técnica para garantir a transferência de dados em uma rede de forma segura. Nos sistemas criptográficos assimétricos, os nós utilizam uma chave para cifrar uma mensagem e outra chave para decifrar a mesma. A tarefa de administrar essas chaves é realizada por um Sistema de Gerenciamento de Chaves, que define a emissão, o armazenamento, a distribuição, a proteção e a revogação das mesmas. Esse trabalho apresenta um novo Sistema de Gerenciamento de chaves baseado em Virtualização. Nesse sistema, chamado de Virtual Key Management (VKM), ´e utilizado uma estrutura virtual, sem qualquer relação com as coordenadas físicas dos nós da rede, para estabelecer a confiança entre os mesmos. Dessa forma, os nós seguem as regras estabelecidas por essa estrutura para realizar a emissão, o armazenamento, a distribuição, a proteção e a revogação de chaves públicas e de chaves privadas na rede. O VKM é 100% resistente a ataques de Criação de Identidades Falsas. Quando comparado com o Sistema de Gerenciamento de Chaves Públicas Auto-organizado (PGP-Like), o VKM mostra maior resistência contra ataques de Personificação e a mesma resistência contra ataques de Falta de Cooperação. Quando comparado com o Group-based Key Management (GKM), o VKM mostra maior resistência contra ataques de Criação de Identidades Falsas por ser 100% resistente ao mesmo. O Virtual Routing Protocol (VRP) e o Virtual Distance Vector (VDV) são dois protocolos de roteamento híbridos que utilizam uma estrutura virtual para definir a parte pró-ativa do protocolo. Esse trabalho também mostra que o impacto no roteamento causado pela incorporação do VKM nesses protocolos de roteamento causa queda na taxa de entrega de dados, aumento do atraso no envio de mensagens e aumento da sobrecarga gerada na rede

    E-EON : Energy-Efficient and Optimized Networks for Hadoop

    Get PDF
    Energy efficiency and performance improvements have been two of the major concerns of current Data Centers. With the advent of Big Data, more information is generated year after year, and even the most aggressive predictions of the largest network equipment manufacturer have been surpassed due to the non-stop growing network traffic generated by current Big Data frameworks. As, currently, one of the most famous and discussed frameworks designed to store, retrieve and process the information that is being consistently generated by users and machines, Hadoop has gained a lot of attention from the industry in recent years and presently its name describes a whole ecosystem designed to tackle the most varied requirements of today’s cloud applications. This thesis relates to Hadoop clusters, mainly focused on their interconnects, which is commonly considered to be the bottleneck of such ecosystem. We conducted research focusing on energy efficiency and also on performance optimizations as improvements on cluster throughput and network latency. Regarding the energy consumption, a significant proportion of a data center's energy consumption is caused by the network, which stands for 12% of the total system power at full load. With the non-stop growing network traffic, it is desired by industry and academic community that network energy consumption should be proportional to its utilization. Considering cluster performance, although Hadoop is a network throughput-sensitive workload with less stringent requirements for network latency, there is an increasing interest in running batch and interactive workloads concurrently on the same cluster. Doing so maximizes system utilization, to obtain the greatest benefits from the capital and operational expenditures. For this to happen, cluster throughput should not be impacted when network latency is minimized. The two biggest challenges faced during the development of this thesis were related to achieving near proportional energy consumption for the interconnects and also improving the network latency found on Hadoop clusters, while having virtually no loss on cluster throughput. Such challenges led to comparable sized opportunity: proposing new techniques that must solve such problems from the current generation of Hadoop clusters. We named E-EON the set of techniques presented in this work, which stands for Energy Efficient and Optimized Networks for Hadoop. E-EON can be used to reduce the network energy consumption and yet, to reduce network latency while cluster throughput is improved at the same time. Furthermore, such techniques are not exclusive to Hadoop and they are also expected to have similar benefits if applied to any other Big Data framework infrastructure that fits the problem characterization we presented throughout this thesis. With E-EON we were able to reduce the energy consumption by up to 80% compared to the state-of-the art technique. We were also able to reduce network latency by up to 85% and in some cases, even improve cluster throughput by 10%. Although these were the two major accomplishment from this thesis, we also present minor benefits which translate to easier configuration compared to the stat-of-the-art techniques. Finally, we enrich the discussions found in this thesis with recommendations targeting network administrators and network equipment manufacturers.La eficiencia energética y las mejoras de rendimiento han sido dos de las principales preocupaciones de los Data Centers actuales. Con el arribo del Big Data, se genera más información año con año, incluso las predicciones más agresivas de parte del mayor fabricante de dispositivos de red se han superado debido al continuo tráfico de red generado por los sistemas de Big Data. Actualmente, uno de los más famosos y discutidos frameworks desarrollado para almacenar, recuperar y procesar la información generada consistentemente por usuarios y máquinas, Hadoop acaparó la atención de la industria en los últimos años y actualmente su nombre describe a todo un ecosistema diseñado para abordar los requisitos más variados de las aplicaciones actuales de Cloud Computing. Esta tesis profundiza sobre los clusters Hadoop, principalmente enfocada a sus interconexiones, que comúnmente se consideran el cuello de botella de dicho ecosistema. Realizamos investigaciones centradas en la eficiencia energética y también en optimizaciones de rendimiento como mejoras en el throughput de la infraestructura y de latencia de la red. En cuanto al consumo de energía, una porción significativa de un Data Center es causada por la red, representada por el 12 % de la potencia total del sistema a plena carga. Con el tráfico constantemente creciente de la red, la industria y la comunidad académica busca que el consumo energético sea proporcional a su uso. Considerando las prestaciones del cluster, a pesar de que Hadoop mantiene una carga de trabajo sensible al rendimiento de red aunque con requisitos menos estrictos sobre la latencia de la misma, existe un interés creciente en ejecutar aplicaciones interactivas y secuenciales de manera simultánea sobre dicha infraestructura. Al hacerlo, se maximiza la utilización del sistema para obtener los mayores beneficios al capital y gastos operativos. Para que esto suceda, el rendimiento del sistema no puede verse afectado cuando se minimiza la latencia de la red. Los dos mayores desafíos enfrentados durante el desarrollo de esta tesis estuvieron relacionados con lograr un consumo energético cercano a la cantidad de interconexiones y también a mejorar la latencia de red encontrada en los clusters Hadoop al tiempo que la perdida del rendimiento de la infraestructura es casi nula. Dichos desafíos llevaron a una oportunidad de tamaño semejante: proponer técnicas novedosas que resuelven dichos problemas a partir de la generación actual de clusters Hadoop. Llamamos a E-EON (Energy Efficient and Optimized Networks) al conjunto de técnicas presentadas en este trabajo. E-EON se puede utilizar para reducir el consumo de energía y la latencia de la red al mismo tiempo que el rendimiento del cluster se mejora. Además tales técnicas no son exclusivas de Hadoop y también se espera que tengan beneficios similares si se aplican a cualquier otra infraestructura de Big Data que se ajuste a la caracterización del problema que presentamos a lo largo de esta tesis. Con E-EON pudimos reducir el consumo de energía hasta en un 80% en comparación con las técnicas encontradas en la literatura actual. También pudimos reducir la latencia de la red hasta en un 85% y, en algunos casos, incluso mejorar el rendimiento del cluster en un 10%. Aunque estos fueron los dos principales logros de esta tesis, también presentamos beneficios menores que se traducen en una configuración más sencilla en comparación con las técnicas más avanzadas. Finalmente, enriquecimos las discusiones encontradas en esta tesis con recomendaciones dirigidas a los administradores de red y a los fabricantes de dispositivos de red.Postprint (published version

    ATLANTIC EPIPHYTES: a data set of vascular and non-vascular epiphyte plants and lichens from the Atlantic Forest

    Get PDF
    Epiphytes are hyper-diverse and one of the frequently undervalued life forms in plant surveys and biodiversity inventories. Epiphytes of the Atlantic Forest, one of the most endangered ecosystems in the world, have high endemism and radiated recently in the Pliocene. We aimed to (1) compile an extensive Atlantic Forest data set on vascular, non-vascular plants (including hemiepiphytes), and lichen epiphyte species occurrence and abundance; (2) describe the epiphyte distribution in the Atlantic Forest, in order to indicate future sampling efforts. Our work presents the first epiphyte data set with information on abundance and occurrence of epiphyte phorophyte species. All data compiled here come from three main sources provided by the authors: published sources (comprising peer-reviewed articles, books, and theses), unpublished data, and herbarium data. We compiled a data set composed of 2,095 species, from 89,270 holo/hemiepiphyte records, in the Atlantic Forest of Brazil, Argentina, Paraguay, and Uruguay, recorded from 1824 to early 2018. Most of the records were from qualitative data (occurrence only, 88%), well distributed throughout the Atlantic Forest. For quantitative records, the most common sampling method was individual trees (71%), followed by plot sampling (19%), and transect sampling (10%). Angiosperms (81%) were the most frequently registered group, and Bromeliaceae and Orchidaceae were the families with the greatest number of records (27,272 and 21,945, respectively). Ferns and Lycophytes presented fewer records than Angiosperms, and Polypodiaceae were the most recorded family, and more concentrated in the Southern and Southeastern regions. Data on non-vascular plants and lichens were scarce, with a few disjunct records concentrated in the Northeastern region of the Atlantic Forest. For all non-vascular plant records, Lejeuneaceae, a family of liverworts, was the most recorded family. We hope that our effort to organize scattered epiphyte data help advance the knowledge of epiphyte ecology, as well as our understanding of macroecological and biogeographical patterns in the Atlantic Forest. No copyright restrictions are associated with the data set. Please cite this Ecology Data Paper if the data are used in publication and teaching events. © 2019 The Authors. Ecology © 2019 The Ecological Society of Americ

    E-EON : Energy-Efficient and Optimized Networks for Hadoop

    No full text
    Energy efficiency and performance improvements have been two of the major concerns of current Data Centers. With the advent of Big Data, more information is generated year after year, and even the most aggressive predictions of the largest network equipment manufacturer have been surpassed due to the non-stop growing network traffic generated by current Big Data frameworks. As, currently, one of the most famous and discussed frameworks designed to store, retrieve and process the information that is being consistently generated by users and machines, Hadoop has gained a lot of attention from the industry in recent years and presently its name describes a whole ecosystem designed to tackle the most varied requirements of today’s cloud applications. This thesis relates to Hadoop clusters, mainly focused on their interconnects, which is commonly considered to be the bottleneck of such ecosystem. We conducted research focusing on energy efficiency and also on performance optimizations as improvements on cluster throughput and network latency. Regarding the energy consumption, a significant proportion of a data center's energy consumption is caused by the network, which stands for 12% of the total system power at full load. With the non-stop growing network traffic, it is desired by industry and academic community that network energy consumption should be proportional to its utilization. Considering cluster performance, although Hadoop is a network throughput-sensitive workload with less stringent requirements for network latency, there is an increasing interest in running batch and interactive workloads concurrently on the same cluster. Doing so maximizes system utilization, to obtain the greatest benefits from the capital and operational expenditures. For this to happen, cluster throughput should not be impacted when network latency is minimized. The two biggest challenges faced during the development of this thesis were related to achieving near proportional energy consumption for the interconnects and also improving the network latency found on Hadoop clusters, while having virtually no loss on cluster throughput. Such challenges led to comparable sized opportunity: proposing new techniques that must solve such problems from the current generation of Hadoop clusters. We named E-EON the set of techniques presented in this work, which stands for Energy Efficient and Optimized Networks for Hadoop. E-EON can be used to reduce the network energy consumption and yet, to reduce network latency while cluster throughput is improved at the same time. Furthermore, such techniques are not exclusive to Hadoop and they are also expected to have similar benefits if applied to any other Big Data framework infrastructure that fits the problem characterization we presented throughout this thesis. With E-EON we were able to reduce the energy consumption by up to 80% compared to the state-of-the art technique. We were also able to reduce network latency by up to 85% and in some cases, even improve cluster throughput by 10%. Although these were the two major accomplishment from this thesis, we also present minor benefits which translate to easier configuration compared to the stat-of-the-art techniques. Finally, we enrich the discussions found in this thesis with recommendations targeting network administrators and network equipment manufacturers.La eficiencia energética y las mejoras de rendimiento han sido dos de las principales preocupaciones de los Data Centers actuales. Con el arribo del Big Data, se genera más información año con año, incluso las predicciones más agresivas de parte del mayor fabricante de dispositivos de red se han superado debido al continuo tráfico de red generado por los sistemas de Big Data. Actualmente, uno de los más famosos y discutidos frameworks desarrollado para almacenar, recuperar y procesar la información generada consistentemente por usuarios y máquinas, Hadoop acaparó la atención de la industria en los últimos años y actualmente su nombre describe a todo un ecosistema diseñado para abordar los requisitos más variados de las aplicaciones actuales de Cloud Computing. Esta tesis profundiza sobre los clusters Hadoop, principalmente enfocada a sus interconexiones, que comúnmente se consideran el cuello de botella de dicho ecosistema. Realizamos investigaciones centradas en la eficiencia energética y también en optimizaciones de rendimiento como mejoras en el throughput de la infraestructura y de latencia de la red. En cuanto al consumo de energía, una porción significativa de un Data Center es causada por la red, representada por el 12 % de la potencia total del sistema a plena carga. Con el tráfico constantemente creciente de la red, la industria y la comunidad académica busca que el consumo energético sea proporcional a su uso. Considerando las prestaciones del cluster, a pesar de que Hadoop mantiene una carga de trabajo sensible al rendimiento de red aunque con requisitos menos estrictos sobre la latencia de la misma, existe un interés creciente en ejecutar aplicaciones interactivas y secuenciales de manera simultánea sobre dicha infraestructura. Al hacerlo, se maximiza la utilización del sistema para obtener los mayores beneficios al capital y gastos operativos. Para que esto suceda, el rendimiento del sistema no puede verse afectado cuando se minimiza la latencia de la red. Los dos mayores desafíos enfrentados durante el desarrollo de esta tesis estuvieron relacionados con lograr un consumo energético cercano a la cantidad de interconexiones y también a mejorar la latencia de red encontrada en los clusters Hadoop al tiempo que la perdida del rendimiento de la infraestructura es casi nula. Dichos desafíos llevaron a una oportunidad de tamaño semejante: proponer técnicas novedosas que resuelven dichos problemas a partir de la generación actual de clusters Hadoop. Llamamos a E-EON (Energy Efficient and Optimized Networks) al conjunto de técnicas presentadas en este trabajo. E-EON se puede utilizar para reducir el consumo de energía y la latencia de la red al mismo tiempo que el rendimiento del cluster se mejora. Además tales técnicas no son exclusivas de Hadoop y también se espera que tengan beneficios similares si se aplican a cualquier otra infraestructura de Big Data que se ajuste a la caracterización del problema que presentamos a lo largo de esta tesis. Con E-EON pudimos reducir el consumo de energía hasta en un 80% en comparación con las técnicas encontradas en la literatura actual. También pudimos reducir la latencia de la red hasta en un 85% y, en algunos casos, incluso mejorar el rendimiento del cluster en un 10%. Aunque estos fueron los dos principales logros de esta tesis, también presentamos beneficios menores que se traducen en una configuración más sencilla en comparación con las técnicas más avanzadas. Finalmente, enriquecimos las discusiones encontradas en esta tesis con recomendaciones dirigidas a los administradores de red y a los fabricantes de dispositivos de red
    corecore