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Abstract—With the advent of big data, data center applications
are processing vast amounts of unstructured and semi-structured
data, in parallel on large clusters, across hundreds to thousands
of nodes. The highest performance for these batch big data
workloads is achieved using expensive network equipment with
large buffers, which accommodate bursts in network traffic and
allocate bandwidth fairly even when the network is congested.
Throughput-sensitive big data applications are, however, often
executed in the same data center as latency-sensitive workloads.
For both workloads to be supported well, the network must
provide both maximum throughput and low latency. Progress has
been made in this direction, as modern network switches support
Active Queue Management (AQM) and Explicit Congestion
Notifications (ECN), both mechanisms to control the level of
queue occupancy, reducing the total network latency.

This paper is the first study of the effect of Active Queue
Management on both throughput and latency, in the context
of Hadoop and the MapReduce programming model. We give
a quantitative comparison of four different approaches for
controlling buffer occupancy and latency: RED and CoDel, both
standalone and also combined with ECN and DCTCP network
protocol, and identify the AQM configurations that maintain
Hadoop execution time gains from larger buffers within 5%,
while reducing network packet latency caused by bufferbloat by
up to 85%. Finally, we provide recommendations to administra-
tors of Hadoop clusters as to how to improve latency without
degrading the throughput of batch big data workloads.
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I. INTRODUCTION

With the advent of Big Data, data center applications
are processing multi-terabyte datasets, in parallel on large
clusters, across hundreds to thousands of nodes. A typical
framework for big data processing is the MapReduce
programming model [1] and its open-source implementation
Apache Hadoop [2]. Big data workloads based on Hadoop
or similar frameworks generate significant communication
among servers within the same data center. In particular, as
explained below, the shuffle phase of MapReduce involves an
all-to-all communication, which presents a stressful load on
the network.

For these workloads, the highest performance is achieved
using expensive network equipment with large buffers, which
are better able to accommodate congestion and network
traffic bursts. Large buffer switches, however, suffer from
the bufferbloat phenomenon, in which TCP (greedily) makes
full use of the available buffers, even when maximum
performance can be achieved using much less buffering.

Bufferbloat has been found to cause excessive packet delays
within data centers [3]. Nevertheless, it is reasonable to expect
that bufferbloat would have little direct effect on Hadoop,
since its communication is dominated by long network flows.

Throughput-sensitive big data applications are, however,
often executed in the same data center as other workloads
that directly interact with external users, and these workloads
are sensitive to network latency. In this case, the network
is shared between both classes of application, so it should
therefore provide not only the maximum possible throughput,
but also the lowest possible latency.

This paper is, to the best of our knowledge, the first to
analyze mechanisms to control packet delay in a Hadoop
cluster. We study Active Queue Management (AQM) and
Explicit Congestion Notifications (ECN), both of which are
supported in modern network switches. ECN, in particular,
has received major attention in recent years. For instance, in
mid-2015, Apple enabled it by default on all its operational
systems, in order to improve the customer experience. We
perform a quantitative evaluation of the tradeoff between
throughput and latency, for four different approaches for
controlling buffer occupancy and latency: Random Early
Detection (RED) and CoDel queues, both standalone and also
combined with ECN and Data Center TCP (DCTCP). This is
done in the context of MapReduce and Apache Hadoop [2],
which present a specific traffic pattern in the shuffle phase.

Our work provides recommendations to administrators of
Hadoop clusters. We show experimental results at the network
level, in terms of network throughput and packet latency. More
importantly, we also show the impact on Hadoop job execution
time. Previous analysis suggested that CoDel and other tech-
niques that reduce buffer occupancy would also translate to
better performance during Hadoop’s all-to-all communication
phase [4]. We find that TCP already functions well, so Hadoop
execution time is not improved by such techniques. Moreover,
in some cases a poorly-chosen AQM configuration increases
the execution time by an unacceptable 20%. We do, however,
identify good AQM configurations that are able to maintain
Hadoop execution time gains from larger buffer to within 5%,
while reducing packet latency caused by bufferbloat by 85%.

In short, our contributions are threefold:
1) A study of mechanisms that can be employed on Hadoop

clusters to control packet delay.
2) A quantitative evaluation of the tradeoff between



throughput and latency for RED and CoDel queues, both
standalone and also combined with ECN and DCTCP.

3) Recommendations to cluster administrators to improve
latency without degrading throughput.

The rest of the paper is organized as follows: Section II pro-
vides the background about MapReduce and Hadoop, the main
TCP/IP problems encountered in modern data centers, Active
Queue Management, Explicit Congestion Notifications and
DCTCP. Section III compares our approach with related work.
Section IV presents the methodology, quantitative results and
analysis, from which Section V distills the most important
recommendations. Finally, Section VI concludes the paper.

II. BACKGROUND

This section describes the most important problems en-
countered in modern data center networks, and it describes
the main solutions, both current practice and state-of-the-art.
It also summarizes the Hadoop framework and MapReduce
programming model.

A. TCP in Modern Data Centers

Recent studies show that 97% of the traffic in current
data centers is carried by IP packets, either as TCP or UDP
segments depending on the workload [5]. In 2010, Microsoft
Research published a study of 150 TB of network traces that
showed that, for their data center, TCP segments made up
more than 99% of their internal traffic [6].

TCP was initially designed for Wide Area Networks
(WANs) [7], and certain aspects of its design, such as the
minimum Retransmission Timeout (RTO) of 200ms are better
suited to WANs than data center LANs. Problems that arise in
such a low-latency environment include (a) TCP Incast [7], a
dramatic loss in throughput for many-to-one communication
patterns, where congestion leads to packet loss, (b) TCP
Outcast [8], where (surprisingly) the throughput to a congested
node may be much lower from nearby nodes than from
more distance ones, and (c) Bufferbloat [3], where congestion
causes excessive packet buffering, leading to high and variable
latency.

There are two situations where network equipment most
benefit from larger buffers. Firstly, in upper-layer devices, at
the aggregation and core layers, when bursty traffic on multiple
incoming links is redirected to the same outgoing port, the
switch will have to queue the packets before transmitting them.
Secondly, in the access layer; i.e. in the Top-of-Rack (ToR)
switches, incoming traffic going to the server nodes may arrive
on a link that has higher bandwidth than the link to the server;
e.g. packets arrive at 10GbE but must be transmitted at 1GbE.

In an ideal case, data center networks should accommodate
long flows, which require high throughput, and also allow
short flows to have low latency in scenarios where buffers
are heavily used. Doing so may not be possible on some
workloads, and trade-offs have to be considered to adjust each
case to the best possibility.

B. Controlling latency and buffer occupancy
1) Active Queue Management: AQM schemes have been

proposed to manage buffer occupancy and keep the average
latency of the buffers below a determined threshold. The goal
is eliminate the problem found on DropTail queues that tend
to penalize bursty flows and also introduce high latency into
the network. Bursty flows are penalized when TCP global
synchronization happens. Instead, an AQM scheme aims to
keep the delay controlled by providing feedback to the end
points through appropriately dropping packets. Another goal
of these smarter queues is to support the use of Explicit
Congestion Notifications, found on TCP network protocol,
that allow end points to react before congestion happens. On
this paper we selected two AQMs to compare, Random Early
Detection (RED) [9] and Controlled Delay (CoDel) [10].

Random Early Detection (RED) was proposed in 1993 [9]
and since then, it has been widely studied and adopted.
Implementations of RED are found on Linux, Solaris, and
FreeBSD [11]. It is also implemented by network equipment
vendors including Cisco [12] and Juniper Networks [13]. RED
uses configurable thresholds to decide when to mark packets
when combined with ECN, and drops packets based on a
probability that grows with the queue occupancy.

Controlled Delay (CoDel) was proposed in 2012 and since
then, it has gained more attention. Its usage is recommended
by the Bufferbloat initiative [3] [14]. It promises to be easier
to configure than RED, which has several parameters and
variants to be configured. CoDel claims it has no parameters
to set at all, but still, the user needs to configure the target
delay, which is the tolerable delay per-packet when queued
until it is transmitted, and the interval how often the delay per
packet of transmitted packets within the interval is evaluated.
If any packet has a delay grater that the target, the interval is
shortened, otherwise it is reset at the end of its cycle.

2) Explicit Congestion Notifications: ECN are helpful to
indicate a pre-state of congestion on the network and allow
senders to proactively react before it happens. Instead of
waiting for the buffer to drop packets and trigger the fast
retransmit state of TCP, which involves waiting for the RTO
timeout of TCP (typically on a range from 200ms to 1ms)
and then reset to the slow start state of TCP, the sender reduces
its congestion window by the number of marked packets,
alleviating the pressure under the buffer that signalized the
congestion which helps to reduce latency and specially jitter.

On data center networks, using such feature may reduce
throughput of applications while keeping the latency and
buffer occupancy low, which may not be desired on frame-
works with high throughput requirements. As alternate so-
lutions, DCTCP has been proposed which involves some
modifications on the TCP network protocol to specifically fit
data center network requirements: high throughput and small
latency.

3) Data Center TCP: DCTCP is an extension to the
TCP network protocol proposed by Microsoft Research Center
as an alternate solution to specifically reduce the latency on
data center networks without affecting throughput. On its



evaluation using commodity switches, DCTCP was able to
deliver even better performance than TCP itself. Currently
network equipment manufactures are iterating into their lineup
and recommending the usage of deep buffer switches for Big
Data frameworks, specially Hadoop, which demands more
analyses of how DCTCP performs on such type of workloads
and using these new network equipments.

C. MapReduce and Hadoop

In 2004 Google introduced the MapReduce programming
model for reliable fault-tolerant processing of huge data sets on
large commodity clusters [1]. The programmer is given a data
abstraction in terms of map and reduce operations on key/value
pairs, and the framework takes care of the implementation de-
tails including automatic parallelization, task scheduling with
data locality, monitoring, redundant distributed data storage,
and re-executing failed tasks. The input and output data for the
MapReduce jobs are stored on a distributed filesystem known
as Apache HDFS (Hadoop Distributed File System), which
uses disks attached to the same nodes used for computation.
The job scheduler tries to schedule tasks to run on nodes where
data is already present, resulting in high data locality [2].

The MapReduce framework first splits the input data set into
independent chunks, which are processed in parallel by the
map tasks. It then sorts the combined outputs from the maps,
in the so-called shuffle stage, passing the sorted data to the
reduce tasks. This stage involves an all-to-all communication
among nodes.

Several open-source MapReduce frameworks have been de-
veloped over the years, with by far the most popular one being
Apache Hadoop [2]. The MapReduce programming model [1]
targets commodity hardware and network equipment using the
TCP/IP protocol. But with the advent and revolution of the
Internet, more modern equipments are offered, which include
bigger buffers to handle bursty network communication, and
therefore, yielding the amount of information generated by the
Big Data era.

III. RELATED WORK

Heterogeneous clusters are becoming relatively more com-
mon on modern data centers as an attempt to reduce cost and
avail the built infrastructure. As an example, Apache Myriad is
a open source project that enables Apache Hadoop to run side-
by-side with other type of applications, dynamically sharing
cluster resources [15].

Several vendors are positioning themselves for the Big
Data market and have introduced network equipment with
the promise of increased performance for Big Data applica-
tions. Arista Networks is marketing their new 7048T, 7280E
and 7500R switch series with large buffers as recommended
solutions for optimum performance for Hadoop [16]. Cisco
published a study that found that network latency has little
impact on job completion time, among other factors such
as availability and resiliency, burst handling queuing, over-
subscription ratio and data node network speed [17]. In the
same study, burst handling queuing capability was considered

as the second most important factor that affects job completion
time.

A lot of attention so far has focused on RED, which is
widely used as a baseline for the evaluation of new AQMs.
Also it has based versions implemented by network vendors
as Cisco [12] and Juniper Networks [13].

The CoDel IETF draft [4] suggests that CoDel would
be useful in environments other than the normal Internet,
including in data center switches, particularly for MapReduce
clusters. As described, a CoDel queue tuned for such an en-
vironment promises to minimize packet drops, while keeping
throughput high and latency low.

DCTCP was presented before CoDel, and it used a variant
of the RED queue, with recommended values of the min-
imum and maximum thresholds both equal to 70 packets.
When DCTCP was compared to RED, it was suggested that
although RED combined with ECN would dramatically reduce
network throughput in data centers, DCTCP would maintain
high throughput (while providing low queue occupancy and
low delay). The explanation was that, instead of dramatically
cutting the TCP congestion window by the number of marked
acknowledges, DCTCP reduces the window gently to maintain
high throughput.

Wu et al. presented a comprehensive study on the tuning
of ECN for data center networks, which they described as
ECN* [18]. Their new approach performs as well as DCTCP,
but it requires modifications to the ECN marking scheme in
the network switches (the transport protocol and end points
are not modified). They proposed marking packets when they
leave the network queue (“dequeue marking”) instead of when
they enter the network queue (classical “enqueue marking”,
as used in RED). Dequeue marking seems to deliver similar
results to DCTCP’s gentle congestion control. This proposal
also came before the introduction of CoDel, which also marks
packets when dequeue occurs, suggesting that CoDel would
also deliver better performance than RED. Big Data work-
loads or deep buffer switches were not considered, missing a
more profound analysis of the scenarios that typically present
bufferbloat phenomena. When specifically compared using
NS–2 simulations with synthetically generated traffic with a
Pareto distribution, CoDel delivered lower latency than RED
but the latter was still considered as a good candidate for an
AQM [19].

Incast was shown to have little significant impact on the
performance of Hadoop, assuming a well-tuned Hadoop clus-
ter. Incast is characterized by many-to-one communication
where the buffer on the receiver pipe is heavily pressured
so packets are lost. But its effect is specially devastating on
partition/aggregation workloads which perform small queries,
because the default RTO (Retransmission Timeout) penalty of
200ms represents a big overhead on the overall performance.
Hadoop presents many-to-one network communication in its
shuffle phase, but on a well-configured system there is not
significant overhead caused by incast. Also, buffers of network
equipments are highly used, especially during the shuffle and
write phases [20]. As we demonstrate in our results, Hadoop



TABLE I
SIMULATED ENVIRONMENT

Category Parameter Value

Simulated hardware
System Number nodes 160

Number racks 4
Node CPU Intel Xeon 2.5 GHz L5420

Number cores 2
Number processors 2

Network Each node 1GbE: 1 —
Each leaf switch 1GbE: 40 10GbE: 2
Each spine switch — 10GbE: 4

Buffers Commodity switches 200 packets - max 133 KB per port
Expensive switches 2000 packets - max 1.33 MB per port

is highly throughput-sensitive. Therefore, in contrast to the
recommendation to use a smaller minRTO in data centers,
specially when using big buffer equipments which tolerate
more bursty communication, reducing the RTO from 200ms
to 1ms can impact on a fake RTO penalty. For example,
an in-flight packet could still be queued in a buffer and
since on bufferbloat scenarios the average latency per packet
can be higher than such small RTO, TCP would trigger its
timeout even if the packet is not dropped. For this reason our
simulations use the default TCP minRTO of 200ms and the
overall results can be verified on the next section.

IV. RESULTS

This section first describes the experimental methodology,
and then presents the quantitative results, giving the runtime,
throughput and latency for Hadoop using control delay mech-
anisms.

We evaluate control delay mechanisms as a function of the
network topology, hardware configuration, and transport proto-
col, using the NS-2 packet-level network simulator [21]. This
simulator has been extended with CoDel [22] and DCTCP [23]
implementations and is driven by the MRPerf MapReduce
simulator [24]. This methodology gives full visibility of the
fine-grain details of the TCP/IP protocol in the data center
environment. Extensive evaluation has been done with RED,
CoDel and DCTCP using NS-2 which brings us to a fair
comparison with our results.

A. Simulation Environment and Workload Characterization

The simulated hardware is shown in Table I. We simulate
a 4-rack cluster with 40 nodes per rack, each node having the
throughput of a two-core Xeon at 2.5GHz and a single 1GbE
link to the top-of-rack (ToR) switch.

The data center architecture selected for this work was the
leaf-spine architecture [25] as seen in Figure 1. Leaf-spine
architecture is the recommended architecture for warehouse
scale computer. The topology brings spine and leafs switches
similar to the access and aggregation switches found on the
classical k-ary fat tree [26]. The advantage of leaf-spine when
compared to the k-ary fat free is its full mesh connectivity

Fig. 1. Leaf-spine Cluster Topology

between leaf and spine switches. Each leaf switch, also known
as top-of-rack (ToR) switch, is connected to the spine switch,
regularly named aggregation switch on the fat tree model,
using a single 10GbE link. The over-subscription ratio on
the access layer is equal to 2:1. This matches cluster design
recommendations that MapReduce clusters should be deployed
with an over-subscription ratio not greater than 4:1 at the
access layer [17] [27].

Is important to mention that the leaf-spine topology can
also be categorized as a 2-level fat-tree topology, i.e. without
the core layer, and it is not organized in pods. Since the
focus of this work was to analyze MapReduce workloads in
depth we decided to consider only the leaf-spine topology for
this paper, which seems to be recommended for Hadoop, as
seen in various references for cluster design [16] [28] [29].
Nevertheless, from the results obtained on this work we expect
similar phenomena in many other distributed applications that
are throughput sensitive and use either a traditional fat-tree
topology or a leaf-spine topology.

On our cluster we used the multiPath option from NS-2 that
simulates the equal cost multi-path routing through two equal
cost routes. Equal Cost Multi Path (ECMP) feature is essential
for a representative analysis of this cluster topology, which
offers multiple routes and loaded over-subscription. Recent
works as [30] show the benefit of using multipath TCP achiev-
ing improved network utilization and better reliability. Since
multipath TCP is not yet commonly adopted in mainstream
and we want to specifically investigate the impact of latency
control mechanisms and DCTCP on Hadoop we decided to

Fig. 2. Shuffle Characterization



Fig. 3. Normalized Results for Controlled Delay Queue

TABLE II
CONTROLLED DELAY SETTINGS

Target delay Interval Reference

Config 1 500 µs 20ms [14]
Config 2 300 µs 0.75 µs [31]
Config 3 400 µs 1ms Proposal 1
Config 4 800 µs 1.5ms Proposal 2

bound the scope of this work using only ECMP feature.
We provide results for both shallow and deep buffer

switches. Hadoop clusters often use inexpensive commodity
switches, which have small (shallow) buffers. Small buffers
can cause excessive packet loss over bursty communication
and network equipment vendors are already promoting
deeper buffered equipments for Hadoop clusters as seen
in Section III. Related work comparing Active Queue
Management tend to use packets instead of buffer size so we
selected two different values for queue sizes as 200 packets
or 2000 packets. For packets using maximum payload size of
1500 bytes translate our max capacity per port of 133 KBytes
or 1.33 MBytes respectively.

Table I also shows the configuration of the simulated
workloads. We reserve one node for Hadoop housekeeping, to
serve as namenode and jobtracker, with the remaining nodes
used as worker nodes for processing map and reduce tasks.
On previous work [32] we simulated a smaller cluster with
different type of workloads to understand the nuances found on
a MapReduce cluster. We found small variability, most caused
by the Hadoop scheduler. As for this work we expanded the
size of our cluster, to limit the noise introduced by different
scheduling decisions, we analyzed a single Terasort job
configured to sort 6.4 GBytes (random elements) with 100
mappers. Terasort is a popular batch benchmark commonly
used to measure MapReduce performance on a Hadoop
cluster. In order to make it representative we characterized
the shuffle phase as shown in Figure 2, to be consistent with a

study of traces obtained at Facebook, which shows that most
of the jobs were small and shuffle represented more than 50%
of the execution time of a job [33]. Shuffle is considered the
MapReduce phase that mostly stresses the network because
its all-to-all communication between mappers and reducers.

We run the same Terasort job changing the number of map
inputs and chunk size and fixing the number of reducers to the
recommended, which is the number of workers in order to use
the full system [34]. In a real cluster is recommended to use the
factor 0.95 and leave a few nodes free in case of node failures.
Since MRPerf does not simulate failing nodes we modeled
the Terasort task divided by servers, each of them handling a
proportion of the output from the map nodes. As our cluster
has capacity of 2 mapslots and 2 reduce slots per node it give
us relatively low utilization of not more than 40% which also
matches with production tracers [33]. The communication,
most of which is in the shuffle stage, is close to proportional
to the workload size, but increases as the network becomes the
bottleneck. Since the communication pattern is also repetitive,
we can obtain representative figures using only one task as
network and cluster utilization were proportionally designed
based on available tracers.

We use three performance metrics: the runtime which is
the total time needed to finish the Terasort workload, found
to be inversely proportional to the effective throughput of the
cluster; the average throughput per node and the average end-
to-end latency per packet.

For throughput and runtime we used the same baseline
for the whole set of results which is the DropTail queue
for shallow buffers. This way we were able to compare
improvements on runtime when using deep buffer equipments
as promoted by new vendors.

For latency we considered two baselines. The naive as-
sumption would be assuming congestion is something rare that
happens only when there are peaks during the communication.
On networks, congestion happens all the time, which means
it is the steady state of the network. The goal of any transport
protocol as TCP is to maximize the usage of the network.



Fig. 4. Normalized Results for Auto RED Queue

TABLE III
AUTO RANDOM EARLY DETECTION SETTINGS

Target delay 1 GbE thresholds 10 GbE thresholds

100 µs 12.5 -37.5 125 - 375
250 µs 31.25 - 93.75 312.5 - 937
500 µs 62.5 - 187.5 625 - 1875
1ms 125 - 375 NO AQM
2ms 250 - 750 NO AQM
4ms 500 - 1500 NO AQM

TCP, or any other congestion protocol, will be probing the
network, trying to find how many packets the network can
carry until it loses the packet and then back-off. On other
words, TCP is always pushing the network into congestion
and then backing-off. Using deeper buffer equipments will
automatically increase the average delay per packet in order
to obtain some gain on throughput and bursty tolerance. It
is a trade-off between adding extra latency to the network
while having more tolerance to bursty communication and also
obtaining a higher throughput. For this reason we considered
the DropTail queue of each set of simulations as the baseline
for latency. When comparing the delay on shallow buffers, the
smaller DropTail queue is the considered baseline. The same
happens with the deep buffer set of results, which means the
larger DropTail queue is the baseline for latency on bufferbloat
scenarios.

B. Controlled Delay (CoDel)

For Controlled Delay queue we used the available imple-
mentation without any modification. CoDel is considered a
parameterless queue, but the network administrator still has to
provide two values, target and interval as described on Related
Work (see Section III). For our evaluation we considered
values found on previous publications and we also proposed
new values as well to tolerate a bigger delay on bufferbloat
scenarios. The used values on our simulations can be found in

Table II. Still, we couldn’t find many references specifically
related to tune CoDel for data center networks. We can list the
values found on Bufferbloat project [14] which recommends
the use of 500 µs for target and 20ms for interval. Another
short paper [31] tested different range of values for CoDel
recommending 300 µs for target and the much smaller 750 µs
for interval. We also proposed 400 µs and 1ms; and 800 µs and
1.5ms for target and interval respectively as found in Table II.
Results can be found in Figure 3.

Starting by the results with shallow buffers, CoDel was
able to reduce the average delay per packet by half using
our second proposal (config 4) with virtually no loss on
throughput. When using the settings recommended by the
Bufferbloat project (config 1) the delay dropped about 25%
when combined with classical TCP. For all configurations, the
smaller delay was achieved with standalone CoDel, followed
by CoDel + ECN and at last, DCTCP showed the higher
delay. On bufferbloat scenarios, we see that configurations that
tolerate a higher delay also offer similar higher throughput.
The settings recommended by Bufferbloat project were able
to reduce the latency by 35% and still keep about 10%
improvement on execution time. As the baseline for such
scenarios has an average delay per packet of about 6ms, for
latency sensitive applications the configurations using CoDel
stand alone were able to reduce latency to less than 700 µs
with config 4 and even less than 400 µs using config 2. As a
downside, specially configurations 2 and 3 were too aggressive
reducing the congestion window and throughput was severely
impacted.

C. Random Early Detection (RED)

The default implementation of Random Early Detection
queue needed to be adapted for the high-speed networks
found on data centers. RED is typically implemented using
the average queue length for decisions of marking or drop
of packets. We tried to use the average queue length on
our experimentation but our results were too similar to the
DropTail queue. Therefore, to allow simplification we do not



Fig. 5. Normalized Results for Random Early Detection Queue

TABLE IV
RANDOM EARLY DETECTION SETTINGS

Min Th. Max Th. Reference

Config 1 70 70 [6]
Config 2 25 51 [31]
Config 3 25 75 Proposal 1
Config 4 50 150 Proposal 2

include them. Instead, we used the instant queue length on
all our simulations with RED queue. We don’t claim novel on
this as previous works already demonstrated that instant queue
length fits better for high speed networks as within the data
center, we just confirmed and emphasize what was already
demonstrated on previous evaluation [6].

RED offers an auto configuration setting that needs only
one parameter: the target delay [11]. Such feature takes in
consideration the speed of the network interface card and
based on the ”packet time constant”, which is the maximum
number of average sized packets that can be transmitted per
second. If the network interface is fast enough and the target
delay is also big enough, the thresholds will not be useful and
the queue will behave as a DropTail queue. We couldn’t find
any references on literature so we performed a sweep using
different values as found in Table III. Results are found in
Figure 4.

We also considered different values found on previous
publications and also proposed new values. With two new
proposals, we also tried to match the performance of CoDel
on the same base. Our considered values for RED are found
in Table IV. Results for fixed settings are found in Figure 5.

It is easy to verify that RED auto configuration feature
shows a clear tradeoff between latency and throughput. It
seems to simplify the process of tuning the queue as we
can clearly see that small values as 100 µs will drop the
performance by unacceptable 30%. As the values increase, we

can see the average delay also increasing. To compare with the
other values proposed on literature we decided to use 1ms as it
was able to reduce the latency by 85% on bufferbloat scenario
while still keeping a improvement of 5% on execution time.

When analyzing the fixed settings we can see that the
first three configurations (config 1, config 2 and config 3)
didn’t perform well for RED, increasing the runtime in 10%.
Configuration 4 was able to maintain the same execution time
and still reduce latency by up to 90%. On the next subsection
we compare the best values observed on CoDel and on RED.

D. CoDel x RED

Figure 6 compares the best settings of each queue side-
by-side. When comparing CoDel and RED side-by-side we
selected the two best values of each. The first pair are the
settings that offer the best throughput but do not have a
considerable cut on latency. The last pair are the settings which
offer the best reduction on delay while still maintain some gain
on throughput. We can see that even though CoDel and RED
use values that are more or less at the same scale (800 µs vs.
1ms), RED tend to achieve smaller latency than CoDel. On the
other hand, CoDel was able to achieve the best runtime. One
explanation for such difference is that RED is using the instant
queue length, which turns out to be more responsive than
the dynamic calculation performed by CoDel. Also, CoDel
feature of marking packets on dequeuing, when combined
with DCTCP, seems to be too conservative on reducing the
congestion window and therefore does not reduce the latency
as much as standalone CoDel or CoDel combined with ECN.
By choosing other settings as 2ms or 4ms from RED auto
configuration we would be able to match CoDel’s performance
but latency would be increased as well.

V. DISCUSSION AND RECOMMENDATIONS

As mentioned in the introduction, data center networks are
starting to employ a new generation of switches with larger
buffers, in order to accommodate bursty communications and
deliver better application performance. Almost all applications



Fig. 6. Normalized Results for CoDel x RED Queues

currently use TCP as the transmission protocol, so they will
suffer from large packet latency, due to TCP’s tendency
to fully utilize the available buffering. Recent switches that
implement AQM already support ECN, but until a good
understanding of the impact of congestion control on real
application performance has been reached, these features are
likely to remain switched off, unnecessarily forgoing a feature
that could significantly reduce latency.

This paper contributes to the necessary understanding by
analyzing the tradeoff in detail for MapReduce workloads,
which are representative of modern big data applications in
modern data centers.

When congestion happens at an AQM queue, if combined
with ECN, it will tell the sender proactively. The naive
assumption would be to think that packet loss is always
destructive, but an equally naive assumption is to believe that
something even more destructive would be the reduction in the
size of the congestion window. As seen in the results section,
CoDel combined with DCTCP can be too conservative on
reducing the congestion window. Therefore the delay is not
reduced as much as it was on standalone CoDel or CoDel
combined with ECN while the throughput remained about the
same.

Surprisingly, with standalone RED or RED combined with
ECN, we were able to considerably reduce the latency on
bufferbloat scenarios by 85%, and still maintain performance
gains from larger buffers within 5%. Using instantaneous
queue length instead of the average queue length was ex-
tremely necessary to obtaining these results. It also open
discussions whether CoDel should have faster converging
mode, once its interval, even smaller than 1ms, seems to
deliver much higher latency on similar bases as RED, specially
when it is combined with DCTCP.

Finally we finish with recommendations for system ad-
ministrators. We observed that DCTCP could not achieve
the best cuts on latency. That can be explained because
DCTCP had not been yet analyzed on scenarios with deep
buffers. In deep buffer scenarios, the baseline for latency is

considerably higher and the original recommendation of 70
packets, which was presented in DCTCP’s evaluation, does
not suit for such scenarios. Also, as we mention previously, it
may not perform well with just any AQM, as it was the case
with CoDel. Therefore we recommend careful consideration
before deploying DCTCP on bufferbloat scenarios.

In summary, our observations and recommendations are
threefold:

1) Contrary to what could be expected, both RED and
CoDel queues may perform better standalone than com-
bined with ECN or DCTCP.

2) For high-speed networks, using instant queue length
on RED turned it more responsive than CoDel and its
dynamic evaluation.

3) DCTCP delivered the highest latency per set of configu-
ration on both RED and CoDel, but it was not translated
on considerable gains on throughput to justify its usage.

VI. CONCLUSIONS

A new challenge for modern data centers is to reduce latency
caused by large buffers in the network equipment. Specific
efforts to reduce latency are related to the requirements of
particular workloads. Such actions, however, should not be
considered trivial, because the choice of congestion control
has a significant effect on throughput and performance, and
should not be adopted in practice until the effects on workload
performance are well understood.

This paper presented our new work investigating the ef-
fects of latency control mechanisms on a Hadoop cluster.
We demonstrated how throughput and burst tolerance play
important roles for such big data workloads. We evaluated
the performance impact on execution time, throughput and
latency, when using RED or CoDel, both combined with and
without ECN and at last DCTCP as the transport protocol, and
found that the MapReduce programming model is not sensitive
to the latency but it is sensitive to even small reductions
in the network throughput. We demonstrated that in some
cases with poorly-chosen AQM configuration the execution



time increases by an unacceptable 20%. We also identified
good AQM configurations that were able to maintain Hadoop
execution time gains from larger buffer to within 5%, while
reducing packet latency caused by bufferbloat by 85%.

Therefore we suggest that cluster administrators carefully
consider whether to adopt such techniques, depending on the
cluster design and its utilization. For a heterogeneous cluster
also running latency-sensitive workloads concurrently, it is
important to reduce latency and buffer occupancy caused by
larger buffers. In contrast, clusters used only for batch big data
processing can neglect the latency, and benefit from the lowest
execution time.

In future work, we plan to extend our study to use a protocol
that manages better distribution of flows across the cluster as
multipath TCP, which promises to improve network utilization
and deliver better reliability for workloads.
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