45,120 research outputs found
SMSlingshot a shared encounter in urban space
Interaction design is increasingly situated beyond the desktop and demands new approaches, if it is made for Urban Space. Public and semi-public spaces add new challenges in terms of interaction theory, technology and sociology. SMSlingshot is an interactive unban installation (also named a Shared Encounter) and research vehicle that helps to explore these new challenges
VR/Urban: SMSlingshot
In this paper we describe the concept and design objectives of VR/Urban's media intervention tool SMSlingshot, which was presented at the Riga White Night Arts Festival 2009 for the first time
VR/Urban: spread.gun - design process and challenges in developing a shared encounter for media façades
Designing novel interaction concepts for urban environments is not only a technical challenge in terms of scale, safety, portability and deployment, but also a challenge of designing for social configurations and spatial settings. To outline what it takes to create a consistent and interactive experience in urban space, we describe the concept and multidisciplinary design process of VR/Urban's media intervention tool called Spread.gun, which was created for the Media Façade Festival 2008 in Berlin. Main design aims were the anticipation of urban space, situational system configuration and embodied interaction. This case study also reflects on the specific technical, organizational and infrastructural challenges encountered when developing media façade installations
Low Space External Memory Construction of the Succinct Permuted Longest Common Prefix Array
The longest common prefix (LCP) array is a versatile auxiliary data structure
in indexed string matching. It can be used to speed up searching using the
suffix array (SA) and provides an implicit representation of the topology of an
underlying suffix tree. The LCP array of a string of length can be
represented as an array of length words, or, in the presence of the SA, as
a bit vector of bits plus asymptotically negligible support data
structures. External memory construction algorithms for the LCP array have been
proposed, but those proposed so far have a space requirement of words
(i.e. bits) in external memory. This space requirement is in some
practical cases prohibitively expensive. We present an external memory
algorithm for constructing the bit version of the LCP array which uses
bits of additional space in external memory when given a
(compressed) BWT with alphabet size and a sampled inverse suffix array
at sampling rate . This is often a significant space gain in
practice where is usually much smaller than or even constant. We
also consider the case of computing succinct LCP arrays for circular strings
Recommended from our members
Transverse field-induced nucleation pad switching modes during domain wall injection
We have used magnetic transmission soft X-ray microscopy (M-TXM) to image in-field magnetization configurations of patterned Ni80F20 domain wall "nucleation pads" with attached planar nanowires. Comparison with micromagnetic simulations suggests that the evolution of magnetic domains in rectangular injection pads depends on the relative orientation of closure domains in the remanent state. The magnetization reversal pathway is altered by the inclusion of transverse magnetic fields. These different modes explain previous results of domain wall injection into nanowires
AGU Centennial Grand Challenge: Volcanoes and Deep Carbon Global CO2 Emissions From Subaerial Volcanism—Recent Progress and Future Challenges
Quantifying the global volcanic CO2 output from subaerial volcanism is key for a better understanding of rates and mechanisms of carbon cycling in and out of our planet and their consequences for the long-term evolution of Earth's climate over geological timescales. Although having been the focus of intense research since the early 1990s, and in spite of recent progress, the global volcanic CO2 output remains inaccurately known. Here we review past developments and recent progress and examine limits and caveats of our current understanding and challenges for future research. We show that CO2 flux measurements are today only available for ~100 volcanoes (cumulative measured flux, 44 Tg CO2/year), implying that extrapolation is required to account for the emissions of the several hundred degassing volcanoes worldwide. Recent extrapolation attempts converge to indicate that persistent degassing through active crater fumaroles and plumes releases ~53–88 Tg CO2/year, about half of which is released from the 125 most actively degassing subaerial volcanoes (36.4 ± 2.4 Tg CO2/year from strong volcanic gas emitters, Svge). The global CO2 output sustained by diffuse degassing via soils, volcanic lakes, and volcanic aquifers is even less well characterized but could be as high as 83 to 93 Tg CO2/year, rivaling that from the far more manifest crater emissions. Extrapolating these current fluxes to the past geological history of the planet is challenging and will require a new generation of models linking subduction parameters to magma and volatile (CO2) fluxes
Enhanced tracer transport by the spiral defect chaos state of a convecting fluid
To understand how spatiotemporal chaos may modify material transport, we use
direct numerical simulations of the three-dimensional Boussinesq equations and
of an advection-diffusion equation to study the transport of a passive tracer
by the spiral defect chaos state of a convecting fluid. The simulations show
that the transport is diffusive and is enhanced by the spatiotemporal chaos.
The enhancement in tracer diffusivity follows two regimes. For large Peclet
numbers (that is, small molecular diffusivities of the tracer), we find that
the enhancement is proportional to the Peclet number. For small Peclet numbers,
the enhancement is proportional to the square root of the Peclet number. We
explain the presence of these two regimes in terms of how the local transport
depends on the local wave numbers of the convection rolls. For large Peclet
numbers, we further find that defects cause the tracer diffusivity to be
enhanced locally in the direction orthogonal to the local wave vector but
suppressed in the direction of the local wave vector.Comment: 11 pages, 12 figure
Momentum diffusion for coupled atom-cavity oscillators
It is shown that the momentum diffusion of free-space laser cooling has a
natural correspondence in optical cavities when the internal state of the atom
is treated as a harmonic oscillator. We derive a general expression for the
momentum diffusion which is valid for most configurations of interest: The atom
or the cavity or both can be probed by lasers, with or without the presence of
traps inducing local atomic frequency shifts. It is shown that, albeit the
(possibly strong) coupling between atom and cavity, it is sufficient for
deriving the momentum diffusion to consider that the atom couples to a mean
cavity field, which gives a first contribution, and that the cavity mode
couples to a mean atomic dipole, giving a second contribution. Both
contributions have an intuitive form and present a clear symmetry. The total
diffusion is the sum of these two contributions plus the diffusion originating
from the fluctuations of the forces due to the coupling to the vacuum modes
other than the cavity mode (the so called spontaneous emission term). Examples
are given that help to evaluate the heating rates induced by an optical cavity
for experiments operating at low atomic saturation. We also point out
intriguing situations where the atom is heated although it cannot scatter
light.Comment: More information adde
Optimization of Short Coherent Control Pulses
The coherent control of small quantum system is considered. For a two-level
system coupled to an arbitrary bath we consider a pulse of finite duration. We
derive the leading and the next-leading order corrections to the evolution
operator due to the non-commutation of the pulse and the bath Hamiltonian. The
conditions are computed that make the leading corrections vanish. The pulse
shapes optimized in this way are given for and pulses.Comment: 9 pages, 6 figures; published versio
Anisotropic magnetic diffuse scattering in an easy-plane type antiferromagnet ErNiGe
We report on neutron scattering studies of a rare earth intermetallic
compound ErNiGe. Polarized neutron scattering experiments revealed
that the magnetic ordered moment lies in ab-plane. Taking account of
a lack of the third higher harmonic reflection, ErNiGe is
considered to have a helical magnetic structure. The magnetic scattering
profiles along the - and the -directions are well
described by the sum of Gaussian and modified-Lorentzian terms, even far below
, indicating that short-range orders coexist with a
long-range order. Interestingly, the modified-Lorentzian-type diffuse
scattering is not present in the profiles along the -direction.
The anisotropy of the diffuse scattering suggests that the short-range-order
consists of one dimensional long-range helices along the c-axis.Comment: 4 pages, to be published in J. Phys.: Condens. Matter (HFM2008
- …