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Transverse Field-Induced Nucleation Pad Switching Modes

During Domain Wall Injection

Matthew T. Bryan�, Paul W. Fry�, Thomas Schrefl���, Mike R. J. Gibbs�, Dan A. Allwood�, Mi-Young Im�, and
Peter Fischer�

Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD, U.K.
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We have used magnetic transmission soft X-ray microscopy (M-TXM) to image in-field magnetization configurations of patterned
�������� domain wall “nucleation pads” with attached planar nanowires. Comparison with micromagnetic simulations suggests that
the evolution of magnetic domains in rectangular injection pads depends on the relative orientation of closure domains in the remanent
state. The magnetization reversal pathway is altered by the inclusion of transverse magnetic fields. These different modes explain pre-
vious results of domain wall injection into nanowires.

Index Terms—Domain wall injection, nanowires, nucleation pad, switching modes, transverse field.

I. INTRODUCTION

M
AGNETIZATION reversal in simple, straight

nanowires usually occurs via domain wall nucle-

ation and propagation from one end (or both ends) of the wire

[1], [2]. The switching of the nanowire can be significantly

reduced if a large, magnetically soft pad is fabricated on one of

the wire ends [3]–[5]. These “nucleation pads” reverse at lower

fields than a typical isolated nanowire and hence introduce a

domain wall to the wire from the wire end attached to the pad.

Domain walls nucleated in a pad often become pinned at the

pad/wire junction [3], [4], [6], [7], so they cannot be introduced

into the wire until a critical “injection” field is reached. Once

this occurs, the domain wall sweeps through the wire, reversing

its magnetization. The injection field is designed to be lower

than the nucleation field without a pad so that devices can be

tested without unwanted domain wall nucleation, or device

breakdown, occurring [8]–[10]. Nucleation pads are, therefore,

a simple and convenient way of introducing domain walls with

a clearly defined propagation direction to sometimes complex

devices at low fields. Carefully designed nucleation pads can

also be used to control the chirality of injected vortex domain

walls [11]. Nucleation pads vary widely in dimensions and

shape, with squares, circles, ellipses, rectangles, and several

irregular shapes being investigated [3]–[5], [11], [12]. More

than one remanent magnetic domain configuration, or mode,

can be observed within a pad after successive domain wall

injections, with each mode resulting in a particular injection

field [13].

Nucleation pads are frequently used as part of nanowire de-

vices and experimental structures. Magnetic-field-driven shift
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register memory can include an nucleation pad to write data [14]

while those attached to nanowire spiral turn sensors act as both

a source and sink of domain walls [15]. Both of these devices

use 2-D wire circuits and therefore require the use of orthogonal

in-plane magnetic fields to drive domain walls through wires

of different orientations. These biaxial fields can significantly

alter the fields at which domain wall injection occurs, control

the number of injection modes that exist with attached wires

of various widths [16], and influence the domain wall chirality

[17], [18]. Multimodal behavior, observed in single-shot hys-

teresis loops as a stochastic variation of axial injection fields

between particular values, only occurred below a critical trans-

verse field. However, the mechanism behind this behavior has

not been established.

Here, we image by high resolution magnetic transmission soft

X-ray microscopy (M-TXM) the evolution of magnetic domains

during field-driven reversal of nucleation pads and observe the

resulting domain wall injection in attached wires. Comparing

the magnetic configuration of the nucleation pads with micro-

magnetic models, we find that the relative orientation of clo-

sure domains in the remanent magnetization configuration of

nucleation pads determines the reversal pathway that follows,

although this is further affected by applied transverse fields.

II. EXPERIMENTAL SETUP

24-nm-thick thermally evaporated (permalloy)

structures were fabricated on 100 nm thin membranes

using electron beam lithography followed by lift-off in acetone.

The structures consisted of nucleation pads with

wires of width 200 nm, 300 nm, or 500 nm attached (Fig. 1).

The 180 arc in the wire was not used in this experiment and is

not expected to influence the injection modes of the pad. Fig. 1

also defines the orthogonal and directions, along which the

fields and are applied, respectively.

Magnetic transmission X-ray microscopy (M-TXM) was per-

formed at beamline 6.1.2 at the Center for X-ray Optics, Ad-

vanced Light Source, Berkeley, CA [19]. Magnetization con-

trast in M-TXM images is due to the differential absorption of

circularly polarized X-rays in magnetic materials due to X-ray

0018-9464/$26.00 © 2010 IEEE

Authorized licensed use limited to: Sheffield University. Downloaded on April 19,2010 at 11:37:27 UTC from IEEE Xplore.  Restrictions apply. 



964 IEEE TRANSACTIONS ON MAGNETICS, VOL. 46, NO. 4, APRIL 2010

Fig. 1. Schematic diagram of the structures studied. Wires have width � �

��� nm, 300 nm, or 500 nm and a 180 arc of radius, � � � �m when � �

��� nm or 300 nm, and � � � �� when � � ��� nm.

Fig. 2. M-TXM images showing the magnetization state of a nucleation pad
with a 200-nm-wide wire under fields � and � . The schematics are a guide
to aid interpretation of the images. The reference image is at saturation under
� � ���� ��.

Fig. 3. M-TXM images showing the magnetization state of a nucleation pad
with a 300-nm-wide wire under fields � and � . The schematics are a guide
to aid interpretation of the images. The reference image is at saturation under
� � ���� ��.

magnetic circular dichroism (X-MCD). As the technique is only

sensitive to magnetization components along the X-ray optical

axis, the structures are held at an angle of 30 to the optical

axis to provide contrast in the -direction. The X-rays are fo-

cused using Fresnel zone plates to provide better than 25 nm

spatial resolution with an approximately 10 field of view

on an X-ray sensitive charge-coupled device camera. Together

with a 12 diameter pinhole, the zone plates also act as a

linear monochromator, enabling the X-ray photon energy to be

selected at either 706 eV or 853 eV in order to be sensitive to the

Fe or Ni -edges. Electromagnets are used to apply fields

and during and between image capture. The signal-to-noise

ratio of raw images is improved by averaging several images

from the CCD camera, binning adjacent CCD pixels and ap-

plying digital smoothing functions. The images shown here are

obtained by dividing two raw images obtained under different

field conditions to show changes in magnetization and remove

the strong contrast between regions containing magnetic struc-

ture and bare substrate. One image (the “reference” image) is

taken under saturation conditions, so the final images shown

represent the magnetization state of the second raw image. Full

details of the experimental arrangement of the microscope can

be found elsewhere [20], [21].

Micromagnetic simulations were performed using a hybrid

finite element/boundary element code to solve the Landau–Lif-

shitz–Gilbert equation of motion [22], [23] that has previously

been used to solve magnetization dynamics of domain walls in

magnetic nanowires [24], [25]. The modeled structure consisted

of a pad wire a 500-nm-wide, 2- -long wire

attached, mimicking the essential features of the experimental

structures. The thickness of the simulated structures and the

maximum cell size is 20 nm. Edge roughness was not included

in the model as it is unlikely to affect the domain structure of

the pad. The material properties of bulk permalloy were used in

the model, with exchange stiffness , sat-

uration magnetization , magneto-crystaline

anisotropy and damping constant . The

injection field was found by linearly increasing the axial mag-

netic field at a rate of 1 Oe/ns until the domain wall entered the

wire.

III. RESULTS AND DISCUSSION

Figs. 2–5 show M-TXM images of nucleation pads and

200-nm, 300-nm, and 500-nm-wide wires under various

and . Note that and in Figs. 2

and 3, but and in Figs. 4 and 5.

Also, Figs. 3 and 4 show two nominally identical structures,

not the same structure. In all the structures, the remanent

magnetization state of the pad with no transverse field (part

(a) of Figs. 2–5) consists of a uniform magnetization aligned

with the wire axis, with closure domains at the edges facing

and joining the wire. When and , the

magnetization state of the pad buckles, forming either eight

[Figs. 2(b) and 5(b)] or six [Figs. 3(b) and 4(b)] domains, half

of which have magnetizations rotated away from the x-axis.

As is increased, the rotation of the domains become larger

and the nonrotated domains shrink [Figs. 2(a)–(d), 3(a)–(d),

4(a)–(d), and 5(a)–(d)]. By (125 Oe for the

500-nm-wide wire), the magnetization in each pad is aligned

with the field, and a domain wall is either left at the junction

with the wire [Figs. 2(e) and 3(e)], or injected into the wire

[Figs. 4(e) and 5(e)].
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Fig. 4. M-TXM images showing the magnetization state of a nucleation pad
with a 300-nm-wide wire under fields� and� . The schematics are a guide
to aid interpretation of the images. The reference image is at saturation under
� � ��� ��.

Fig. 5. M-TXM images showing the magnetization state of a nucleation pad
with a 500-nm-wide wire under fields� and� . The schematics are a guide
to aid interpretation of the images. The reference image is at saturation under
� � ��� ��.

When the magnetization of the pad is reset and a transverse

field is applied in addition to the axial field, more complex

modes of magnetization reversal are seen in the pad. In

the pad with the 200-nm-wide wire under

[Figs. 2(f)–(j)], the magnetization enters a six-domain state

when [Fig. 2(f) and (g)], but changes into a

four-domain state at [Fig. 2(h) and (i)], before the

pad completes magnetization reversal at

[Fig. 2(j). The magnetization states of the pads with

300-nm-wide wires under a transverse field [Figs. 3(f)–(j)

and 4(f)–(j)] appear to be distorted forms of the magnetization

state with no transverse field when . However,

these low field distortions are complements of each other: in

one pad wire closure domains are expanded and the central

domain is reduced [Figs. 3(f)–(h)], whereas in the other wire

the closure domains are reduced and the central domain is ex-

panded [Figs. 4(f)–(h)]. These distortions precede differences

in the ongoing evolution of magnetization, with the former pad

undergoing almost complete reversal between 80–100

Oe [Figs. 3(i) and (j)] while the latter forms a Landau pattern,

or vortex, at [Fig. 4(i)] that is expelled at

higher fields to complete the magnetization reversal [Fig. 4(j)].

The pad with a 500-nm-wide wire under forms a

six-domain state when [Figs. 5(f) and (g)], but

this changes to a vortex state at higher fields [Figs. 5(h) and (i)].

The vortex is gradually driven out of the pad as is increased,

until a uniform magnetization state is reached at

[Fig. 5(j)].

While we have not studied the effect of wire width on the

magnetization state of the pad comprehensively, similar magne-

tization states were observed in pads with different width wires

attached. For example, Figs. 2(b) and 5(b) show similar magne-

tization configurations in pads with 200-nm and 500-nm-wide

wires attached, respectively, while Figs. 2(f)–(j) and 3(f)–(j),

and Figs. 4(f)–(j) and 5(f)–(j) each show very similar magneti-

zation reversal pathways under transverse fields. This suggests

that the different magnetization states seen are alternative modes

of pad reversal that are independent of the wire width, rather

than an effect of the wire width on the shape anisotropy at the

pad-wire junction. This stochastic behavior has been previously

observed in different shaped pads [13], where the number of

modes present was temperature-dependent.

Although the transverse field affects the mode of reversal in

the pad, ultimately the pad reaches a single-domain magnetiza-

tion before a domain wall is injected into the wire [part (j) of

Figs. 2–5]. Nevertheless, the transverse field does appear to in-

fluence domain wall injection. For example, the 500-nm-wide

wire switched at without a transverse field,

but at when . This increase in do-

main wall injection field resulting from the inclusion of trans-

verse fields contrasts with our previous results from pads and

wires of different dimensions [16]. This indicates that the de-

tailed effect of transverse field is likely to depend on the partic-

ular pad/wire geometry and dimensions employed and does not

follow a generic rule.

We have been able to understand the pathway of pad mag-

netization more generally by using micromagnetic simulations.

Fig. 6 shows the micromagnetically calculated magnetization

structures under fields and and

10 Oe. Two initial configurations are shown, with the clo-

sure domain on the left-hand edge of the pad either parallel

[Fig. 6(a)] or anti-parallel [Fig. 6(b)] to both closure domains

on the right-hand edges of the pad. A third configuration was

also modeled, with the closure domains on the right-hand edge

opposing each other, but this had a higher energy than the other

two configurations and behaved in a similar way to that shown

Fig. 6(b), so will be neglected from the following analysis.

The alignment of the closure domains determines the number

of domains that form within the pad. Where all the closure

domains are aligned [Fig. 6(a) ii], the simulations accurately

reproduce the six-domain magnetization patterns seen experi-

mentally with the 300-nm-wide wires and no transverse field

[Figs. 3(b) and 4(b)]. Comparison of the M-TXM images and

the micromagnetic modeling suggests that magnetization states

that occur in the pads with the 300-nm-wide wires under a

transverse field [Figs. 3(g) and 4(g)] have closure domains that
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Fig. 6. Micromagnetic simulations of a pad attached to a 500-nm-wide wire.
The closure domains on the right-hand side of the pad are (a) parallel or (b)
anti-parallel to the left-hand closure domain. In each case, � � �� Oe and
� � ��� �� Oe, (ii) 0 Oe, and (iii) �10 Oe.

are aligned. The ensuing magnetization reversal pathways differ

because the transverse field is parallel to the closure domains in

Fig. 3(g) [similar to Fig. 6(a) i] and anti-parallel to the closure

domains in Fig. 4(g) [similar to Fig. 6(a) iii]. In the absence of

a transverse field, an eight-domain magnetization state in the

pads is predicted by the models when the closure domains on

the right-hand edges are both anti-parallel to the closure domain

on the left-hand edge [Fig. 6(b) ii]. This is similar to those seen

experimentally in Figs. 2(b) and 5(b). Under

[Fig. 6(b) iii], the domains rotate to form a state similar to those

observed in Figs. 2(g) and 5(g). We can predict, therefore, that

the magnetization reversal pathway in square or rectangular

nucleation pads depends primarily on the relative orientation of

closure domains. In our M-TXM experiments, the transverse

fields were only applied after the remanent state had been

reached with an axial field. Our previous experiments [16]

used a continuously rotating magnetic field. For domain wall

injection into narrow wires, bimodal behavior tended to cease

as the transverse field component increased. It is now clear that

this may have been due to the transverse field aligning opposite

closure domains, thus dictating the subsequent magnetization

reversal pathway.

As was increased in the calculations to inject a domain

wall, the pad magnetization states changed from those shown

in Fig. 6 to vortex states, as observed by M-TXM in pads with

a 500-nm-wide wire attached [Fig. 5(h)]. At higher fields, the

magnetization of the modeled pad became single-domain, al-

though closure domains remained at fields up to Oe.

Different injection fields were observed with pads of different

initial closure domain configurations when no transverse field

was applied. Pads initially magnetized with parallel closure do-

mains injected domain walls at Oe, 45 Oe, or 44 Oe

when Oe, 0 Oe, or 10 Oe, respectively. By con-

trast, when the closure domains of the pad were anti-parallel,

domain walls were injected at Oe, 56 Oe, or 54 Oe

while Oe, 0 Oe, or 10 Oe, respectively. The in-

crease in injection field for the parallel case when Oe

was brought about by a reversal in the closure domain configu-

ration so that, at the point of injection, they had become anti-par-

allel. Therefore, the model predicts two injection modes, one at

around 45 Oe due to parallel closure domains and another at

around 56 Oe due to anti-parallel closure domains. This sup-

ports the suggestion that experimentally observed multimodal

injection is due to the magnetization state of the pad [13], [16].

Interestingly, the lowest energy state prior to injection occurs

when the closure domains are parallel. As the lowest injection

field occurs in this state, this indicates that the injection field is

determined mainly by the localized reversal mode, rather than

minimization of the global energy of the system.

IV. CONCLUSION

We have used micromagnetic simulation and magnetic trans-

mission soft X-ray microscopy (M-TXM) providing 25 nm spa-

tial resolution to investigate the evolution of magnetization con-

figurations in patterned Ni Fe rectangular nucleation pads

and attached wires during domain wall injection. The relative

orientation of closure domains in the pads determines the mag-

netization reversal pathway under an axial field. However, the

addition of a transverse field can alter the closure domain con-

figuration, affecting the axial field at which domain walls are

injected.
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