426 research outputs found

    Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy

    Get PDF
    Background: Progressive multifocal leukoencephalopathy (PML) was reported to have developed in three patients treated with natalizumab. We conducted an evaluation to determine whether PML had developed in any other treated patients. Methods: We invited patients who had participated in clinical trials in which they received recent or long-term treatment with natalizumab for multiple sclerosis, Crohn's disease, or rheumatoid arthritis to participate. The clinical history, physical examination, brain magnetic resonance imaging (MRI), and testing of cerebrospinal fluid for JC virus DNA were used by an expert panel to evaluate patients for PML. We estimated the risk of PML in patients who completed at least a clinical examination for PML or had an MRI. Results: Of 3417 patients who had recently received natalizumab while participating in clinical trials, 3116 (91 percent) who were exposed to a mean of 17.9 monthly doses underwent evaluation for PML. Of these, 44 patients were referred to the expert panel because of clinical findings of possible PML, abnormalities on MRI, or a high plasma viral load of JC virus. No patient had detectable JC virus DNA in the cerebrospinal fluid. PML was ruled out in 43 of the 44 patients, but it could not be ruled out in one patient who had multiple sclerosis and progression of neurologic disease because data on cerebrospinal fluid testing and follow-up MRI were not available. Only the three previously reported cases of PML were confirmed (1.0 per 1000 treated patients; 95 percent confidence interval, 0.2 to 2.8 per 1000). Conclusions: A detailed review of possible cases of PML in patients exposed to natalizumab found no new cases and suggested a risk of PML of roughly 1 in 1000 patients treated with natalizumab for a mean of 17.9 months. The risk associated with longer treatment is not known

    Infrared exponents and the strong-coupling limit in lattice Landau gauge

    Full text link
    We study the gluon and ghost propagators of lattice Landau gauge in the strong-coupling limit beta=0 in pure SU(2) lattice gauge theory to find evidence of the conformal infrared behavior of these propagators as predicted by a variety of functional continuum methods for asymptotically small momenta q2ΛQCD2q^2 \ll \Lambda_\mathrm{QCD}^2. In the strong-coupling limit, this same behavior is obtained for the larger values of a^2q^2 (in units of the lattice spacing a), where it is otherwise swamped by the gauge field dynamics. Deviations for a^2q^2 < 1 are well parameterized by a transverse gluon mass 1/a\propto 1/a. Perhaps unexpectedly, these deviations are thus no finite-volume effect but persist in the infinite-volume limit. They furthermore depend on the definition of gauge fields on the lattice, while the asymptotic conformal behavior does not. We also comment on a misinterpretation of our results by Cucchieri and Mendes in Phys. Rev. D81 (2010) 016005.Comment: 17 pages, 12 figures. Revised version (mainly sections I and II); references and comments on subsequent work on the subject added

    Infrared Features of the Landau Gauge QCD

    Full text link
    The infrared features of Landau gauge QCD are studied by the lattice simulation of β=6.0,164,244,324\beta=6.0, 16^4, 24^4, 32^4 and β=6.4,324,484\beta=6.4, 32^4, 48^4. We adopt two definitions of the gauge field; 1) UU-linear 2) logU\log U and measured the gluon propagator and ghost propagator. Infrared singularity of the gluon propagator is less than that of tree level result but the gluon propagator at 0 momentum remains finite. The infrared singularity of ghost propagator is stronger than the tree level. The QCD running coupling measured by using the gluon propagator and the ghost propagator has a maximum αs(p)1\alpha_s(p)\simeq 1 at around p=0.5GeVp=0.5GeV and decreases as pp approaches 0. The data are analyzed in use of formula of the principle of minimal sensitivity(PMS), the effective charge method and the contour-improved perturbation method, which suggest necessity of the resummation of perturbation series in the infrared region together with existence of the infrared fixed point. Kugo-Ojima parameter saturates at about -0.8 in contrast to the theoretically expected value -1.Comment: RevTex4, 9 pages, 10 eps figures, Typos corrected. To be published in Phys. Rev. D(2004

    Strong-coupling study of the Gribov ambiguity in lattice Landau gauge

    Full text link
    We study the strong-coupling limit beta=0 of lattice SU(2) Landau gauge Yang-Mills theory. In this limit the lattice spacing is infinite, and thus all momenta in physical units are infinitesimally small. Hence, the infrared behavior can be assessed at sufficiently large lattice momenta. Our results show that at the lattice volumes used here, the Gribov ambiguity has an enormous effect on the ghost propagator in all dimensions. This underlines the severity of the Gribov problem and calls for refined studies also at finite beta. In turn, the gluon propagator only mildly depends on the Gribov ambiguity.Comment: 14 pages, 22 figures; minor changes, matches version to appear in Eur. Phys. J.

    Laser ablation loading of a radiofrequency ion trap

    Full text link
    The production of ions via laser ablation for the loading of radiofrequency (RF) ion traps is investigated using a nitrogen laser with a maximum pulse energy of 0.17 mJ and a peak intensity of about 250 MW/cm^2. A time-of-flight mass spectrometer is used to measure the ion yield and the distribution of the charge states. Singly charged ions of elements that are presently considered for the use in optical clocks or quantum logic applications could be produced from metallic samples at a rate of the order of magnitude 10^5 ions per pulse. A linear Paul trap was loaded with Th+ ions produced by laser ablation. An overall ion production and trapping efficiency of 10^-7 to 10^-6 was attained. For ions injected individually, a dependence of the capture probability on the phase of the RF field has been predicted. In the experiment this was not observed, presumably because of collective effects within the ablation plume.Comment: submitted to Appl. Phys. B., special issue on ion trappin

    Neutral weak currents in pion electroproduction on the nucleon

    Get PDF
    Parity violating asymmetry in inclusive scattering of longitudinally polarized electrons by unpolarized protons with π0\pi^0 or π+\pi^+ meson production, is calculated as a function of the momentum transfer squared Q2Q^2 and the total energy WW of the πN\pi N-system. This asymmetry, which is induced by the interference of the one-photon exchange amplitude with the parity-odd part of the Z0Z^0-exchange amplitude, is calculated for the γ(Z)+pN+π\gamma^*(Z^*)+p\to N+\pi processes (γ\gamma^* is a virtual photon and ZZ^* a virtual Z-boson) considering the Δ\Delta-contribution in the ss-channel, the standard Born contributions and vector meson (ρ\rho and ω\omega) exchanges in the tt-channel. Taking into account the known isotopic properties of the hadron electromagnetic and neutral currents, we show that the P-odd term is the sum of two contributions. The main term is model independent and it can be calculated exactly in terms of fundamental constants. It is found to be linear in Q2Q^2. The second term is a relatively small correction which is determined by the isoscalar component of the electromagnetic current. Near threshold and in the Δ\Delta-region, this isoscalar part is much smaller (in absolute value) than the isovector one: its contribution to the asymmetry depend on the polarization state (longitudinal or transverse) of the virtual photon.Comment: 30 pages 9 figure

    Analytic properties of the Landau gauge gluon and quark propagators

    Full text link
    We explore the analytic structure of the gluon and quark propagators of Landau gauge QCD from numerical solutions of the coupled system of renormalized Dyson--Schwinger equations and from fits to lattice data. We find sizable negative norm contributions in the transverse gluon propagator indicating the absence of the transverse gluon from the physical spectrum. A simple analytic structure for the gluon propagator is proposed. For the quark propagator we find evidence for a mass-like singularity on the real timelike momentum axis, with a mass of 350 to 500 MeV. Within the employed Green's functions approach we identify a crucial term in the quark-gluon vertex that leads to a positive definite Schwinger function for the quark propagator.Comment: 42 pages, 16 figures, revtex; version to be published in Phys Rev

    TEM-EELS study of low-friction superlattice TiAlN/VN coating: the wear mechanisms

    Get PDF
    A 20-50 nm thick tribofilm was generated on the worn surface of a multilayer coating TiAlN/VN after dry sliding test against an alumina counterpart. The tribofilm was characterized by applying analytical transmission electron microscopy techniques with emphasis on detailed electron energy loss spectrometry and energy loss near edge structure analysis. Pronounced oxygen in the tribofilm indicated a predominant tribo-oxidation wear. Structural changes in the inner-shell ionization edges of N, Ti and V suggested decomposition of nitride fragments

    Vagal nerve stimulation started just prior to reperfusion limits infarct size and no-reflow

    Get PDF
    Vagal nerve stimulation (VNS) started prior to, or during, ischemia has been shown to reduce infarct size. Here, we investigated the effect of VNS when started just prior to, and continued during early, reperfusion on infarct size and no-reflow and studied the underlying mechanisms. For this purpose, swine (13 VNS, 10 sham) underwent 45 min mid-LAD occlusion followed by 120 min of reperfusion. VNS was started 5 min prior to reperfusion and continued until 15 min of reperfusion. Area at risk, area of no-reflow (% of infarct area) and infarct size (% of area at risk), circulating cytokines, and regional myocardial leukocyte influx were assessed after 120 min of reperfusion. VNS significantly reduced infarct size from 67 ± 2 % in sham to 54 ± 5 % and area of no-reflow from 54 ± 6 % in sham to 32 ± 6 %. These effects were accompanied by reductions in neutrophil (~40 %) and macrophage (~60 %) infiltration in the infarct area (all p < 0.05), whereas systemic circulating plasma levels of TNFα and IL6 were not affected. The degree of cardioprotection could not be explained by the VNS-induced bradycardia or the VNS-induced decrease in the double product of heart rate and left ventricular systolic pressure. In the presence of NO-synthase inhibitor LNNA, VNS no longer attenuated infarct size and area of no-reflow, which was paralleled by similarly unaffected regional leukocyte infiltration. In conclusion, VNS is a promising novel adjunctive therapy that limits reperfusion injury in a large animal model of acute myocardial infarction

    Masses of ground and excited-state hadrons

    Get PDF
    We present the first Dyson-Schwinger equation calculation of the light hadron spectrum that simultaneously correlates the masses of meson and baryon ground- and excited-states within a single framework. At the core of our analysis is a symmetry-preserving treatment of a vector-vector contact interaction. In comparison with relevant quantities the root-mean-square-relative-error/degree-of freedom is 13%. Notable amongst our results is agreement between the computed baryon masses and the bare masses employed in modern dynamical coupled-channels models of pion-nucleon reactions. Our analysis provides insight into numerous aspects of baryon structure; e.g., relationships between the nucleon and Delta masses and those of the dressed-quark and diquark correlations they contain.Comment: 25 pages, 7 figures, 4 table
    corecore