6,685 research outputs found

    Development flight tests of JetStar LFC leading-edge flight test experiment

    Get PDF
    The overall objective of the flight tests on the JetStar aircraft was to demonstrate the effectiveness and reliability of laminar flow control under representative flight conditions. One specific objective was to obtain laminar flow on the JetStar leading-edge test articles for the design and off-design conditions. Another specific objective was to obtain operational experience on a Laminar Flow Control (LFC) leading-edge system in a simulated airline service. This included operational experience with cleaning requirements, the effect of clogging, possible foreign object damage, erosion, and the effects of ice particle and cloud encounters. Results are summarized

    NASA F-16XL supersonic laminar flow control program overview

    Get PDF
    The viewgraphs and discussion of the NASA supersonic laminar flow control program are provided. Successful application of laminar flow control to a High Speed Civil Transport (HSCT) offers significant benefits in reductions of take-off gross weight, mission fuel burn, cruise drag, structural temperatures, engine size, emissions, and sonic boom. The ultimate economic success of the proposed HSCT may depend on the successful adaption of laminar flow control, which offers the single most significant potential improvements in lift drag ratio (L/D) of all the aerodynamic technologies under consideration. The F-16XL Supersonic Laminar Flow Control (SLFC) Experiment was conceived based on the encouraging results of in-house and NASA supported industry studies to determine if laminar flow control is feasible for the HSCT. The primary objective is to achieve extensive laminar flow (50-60 percent chord) on a highly swept supersonic wing. Data obtained from the flight test will be used to validate existing Euler and Navier Stokes aerodynamic codes and transition prediction boundary layer stability codes. These validated codes and developed design methodology will be delivered to industry for their use in designing supersonic laminar flow control wings. Results from this experiment will establish preliminary suction system design criteria enabling industry to better size the suction system and develop improved estimates of system weight, fuel volume loss due to wing ducting, turbocompressor power requirements, etc. so that benefits and penalties can be more accurately assessed

    MONICA in Hamburg: Towards Large-Scale IoT Deployments in a Smart City

    Full text link
    Modern cities and metropolitan areas all over the world face new management challenges in the 21st century primarily due to increasing demands on living standards by the urban population. These challenges range from climate change, pollution, transportation, and citizen engagement, to urban planning, and security threats. The primary goal of a Smart City is to counteract these problems and mitigate their effects by means of modern ICT to improve urban administration and infrastructure. Key ideas are to utilise network communication to inter-connect public authorities; but also to deploy and integrate numerous sensors and actuators throughout the city infrastructure - which is also widely known as the Internet of Things (IoT). Thus, IoT technologies will be an integral part and key enabler to achieve many objectives of the Smart City vision. The contributions of this paper are as follows. We first examine a number of IoT platforms, technologies and network standards that can help to foster a Smart City environment. Second, we introduce the EU project MONICA which aims for demonstration of large-scale IoT deployments at public, inner-city events and give an overview on its IoT platform architecture. And third, we provide a case-study report on SmartCity activities by the City of Hamburg and provide insights on recent (on-going) field tests of a vertically integrated, end-to-end IoT sensor application.Comment: 6 page

    Long-term storage and age‐biased export of fluvial organic carbon: field evidence from West Iceland

    Get PDF
    Terrestrial organic carbon (OC) plays an important role in the carbon cycle, but questions remain regarding the controls and timescale(s) over which atmospheric CO₂ remains sequestered as particulate OC (POC). Motivated by observations that terrestrial POC is physically stored within soils and other shallow sedimentary deposits, we examined the role that sediment storage plays in the terrestrial OC cycle. Specifically, we tested the hypothesis that sediment storage impacts the age of terrestrial POC. We focused on the Efri Haukadalsá River catchment in Iceland as it lacks ancient sedimentary bedrock that would otherwise bias radiocarbon‐based determinations of POC storage duration by supplying pre‐aged “petrogenic” POC. Our radiocarbon measurements of riverine suspended sediments and deposits implicated millennial‐scale storage times. Comparison between the sample types (suspended and deposits) suggested an age offset between transported (suspended sediments) and stored (deposits) POC at the time of sampling, which is predicted by theory for the sediment age distribution in floodplains. We also observed that POC in suspended sediments is younger than the predicted mean storage duration generated from independent geomorphological data, which suggested an additional role for OC cycling. Consistent with this, we observed interparticle heterogeneity in the composition of POC by imaging our samples at the microscale using X‐ray absorption spectroscopy. Specifically, we found that particles within individual samples differed in their sulfur oxidation state, which is indicative of multiple origins and/or diagenetic histories. Altogether, our results support recent coupled sediment storage and OC cycling models and indicate that the physical drivers of sediment storage are important factors controlling the cadence of carbon cycling

    Crack Resistant Concrete Material for Transportation Construction

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/84828/1/Li_TRB2004.pd

    Shotcreting with ECC

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/84822/1/Li_Fischer_Lepech_Shotcreting.pd

    Complexity of fungal polyketide biosynthesis and function

    Get PDF
    Where does one draw the line between primary and secondary metabolism? The answer depends on the perspective. Microbial secondary metabolites (SMs) were at first believed not to be very important for the producers because they are dispensable for growth under laboratory conditions. However, such compounds become important in natural niches of the organisms, and some are of prime importance for humanity. Polyketides are an important group of SMs with aflatoxin as a well-known and well-characterized example. In Aspergillus spp., all 34 afl genes encoding the enzymes for aflatoxin biosynthesis are located in close vicinity on chromosome III in a so-called gene cluster. This led to the assumption that most genes required for polyketide biosynthesis are organized in gene clusters. Recent research, however, revealed an enormous complexity of the biosynthesis of different polyketides, ranging from individual polyketide synthases to a gene cluster producing several compounds, or to several clusters with additional genes scattered in the genome for the production of one compound. Research of the last decade furthermore revealed a huge potential for SM biosynthesis hidden in fungal genomes, and methods were developed to wake up such sleeping genes. The analysis of organismic interactions starts to reveal some of the ecological functions of polyketides for the producing fungi

    Zero-lag long-range synchronization via dynamical relaying

    Get PDF
    We show that simultaneous synchronization between two delay-coupled oscillators can be achieved by relaying the dynamics via a third mediating element, which surprisingly lags behind the synchronized outer elements. The zero-lag synchronization thus obtained is robust over a considerable parameter range. We substantiate our claims with experimental and numerical evidence of these synchronization solutions in a chain of three coupled semiconductor lasers with long inter-element coupling delays. The generality of the mechanism is validated in a neuronal model with the same coupling architecture. Thus, our results show that synchronized dynamical states can occur over long distances through relaying, without restriction by the amount of delay.Comment: 10 pages, 4 figure

    Directionally Drilled Raw Water Intakes, Grand Forks, North Dakota

    Get PDF
    The City of Grand Forks, North Dakota obtains drinking water from both the Red River and Red Lake River through a system of raw water intakes, shallow pipelines and pump stations. During flood events, the City often loses access to the system. In addition, the banks of the rivers are subject to land sliding, which can easily damage the shallow intakes. This proved particularly true during the record flood event in 1997, and resulted in the design of a new setback levee system by the U.S. Army Corps of Engineers. As a result, the City decided to construct a new gravity raw water intake system inland of the future levees. The design had to address the installation of pipe through soft and weak clay in a known landslide area to depths of up to 80 feet. Horizontal directional drilling (HDD) was chosen as the means of construction. Design issues associated with HDD included the potential for squeezing ground at the deepest sections of the alignment, the potential for hydraulic fracturing beneath the river bottom and at the exit points, river taps, penetrations though a large-diameter caisson pump station. Additional construction issues included bore accuracy and grade to handle design curves, control of squeezing ground at the caisson penetrations, and control of the bore annulus as a potential flow path for river water during construction
    corecore