44,718 research outputs found

    Observation of the Quantum Zeno and Anti-Zeno effects in an unstable system

    Full text link
    We report the first observation of the Quantum Zeno and Anti-Zeno effects in an unstable system. Cold sodium atoms are trapped in a far-detuned standing wave of light that is accelerated for a controlled duration. For a large acceleration the atoms can escape the trapping potential via tunneling. Initially the number of trapped atoms shows strong non-exponential decay features, evolving into the characteristic exponential decay behavior. We repeatedly measure the number of atoms remaining trapped during the initial period of non-exponential decay. Depending on the frequency of measurements we observe a decay that is suppressed or enhanced as compared to the unperturbed system.Comment: 4 pages, 5 figures, submitted to PR

    Frequency versus relaxation oscillations in a semiconductor laser with coherent filtered optical feedback

    Get PDF
    We investigate the dynamics of a semiconductor laser subject to coherent delayed filtered optical feedback. A systematic bifurcation analysis reveals that this system supports two fundamentally different types of oscillations, namely relaxation oscillations and external roundtrip oscillations. Both occur stably in large domains under variation of the feedback conditions, where the feedback phase is identified as a key quantity for controlling this dynamical complexity. We identify two separate parameter regions of stable roundtrip oscillations, which occur throughout in the form of pure frequency oscillations

    Illustrating field emission theory by using Lauritsen plots of transmission probability and barrier strength

    Full text link
    This technical note relates to the theory of cold field electron emission (CFE). It starts by suggesting that, to emphasize common properties in relation to CFE theory, the term 'Lauritsen plot' could be used to describe all graphical plots made with the reciprocal of barrier field (or the reciprocal of a quantity proportional to barrier field) on the horizontal axis. It then argues that Lauritsen plots related to barrier strength (G) and transmission probability (D) could play a useful role in discussion of CFE theory. Such plots would supplement conventional Fowler-Nordheim (FN) plots. All these plots would be regarded as particular types of Lauritsen plot. The Lauritsen plots of -G and lnD can be used to illustrate how basic aspects of FN tunnelling theory are influenced by the mathematical form of the tunnelling barrier. These, in turn, influence local emission current density and emission current. Illustrative applications used in this note relate to the well-known exact triangular and Schottky-Nordheim barriers, and to the Coulomb barrier (i.e., the electrostatic component of the electron potential energy barrier outside a model spherical emitter). For the Coulomb barrier, a good analytical series approximation has been found for the barrier-form correction factor; this can be used to predict the existence (and to some extent the properties) of related curvature in FN plots.Comment: Based on a poster presented at the 25th International Vacuum Nanoelectronics Conference, Jeju, S. Korea, July 2012. Version 3 incorporates small changes made at proof stag

    Long-term evolution of massive star explosions

    Full text link
    We examine simulations of core-collapse supernovae in spherical symmetry. Our model is based on general relativistic radiation hydrodynamics with three-flavor Boltzmann neutrino transport. We discuss the different supernova phases, including the long-term evolution up to 20 seconds after the onset of explosion during which the neutrino fluxes and mean energies decrease continuously. In addition, the spectra of all flavors become increasingly similar, indicating the change from charged- to neutral-current dominance. Furthermore, it has been shown recently by several groups independently, based on sophisticated supernova models, that collective neutrino flavor oscillations are suppressed during the early mass-accretion dominated post-bounce evolution. Here we focus on the possibility of collective flavor flips between electron and non-electron flavors during the later, on the order of seconds, evolution after the onset of an explosion with possible application for the nucleosynthesis of heavy elements.Comment: 12 pages, 7 figures, conference proceeding, HANSE 2011 worksho

    Electronic and structural properties of alkali doped SWNT

    Get PDF
    Comprehensive experiments on structural and transport properties of alkali intercalated single walled carbon nanotubes (SWNT) are presented. The increasing electron density was measured as a shift of the Drude-edge in optical reflectivity in-situ with progressive doping. In saturation-doped samples the Drude-edge shifts into the visible (to 25,000 - 30,000 cm— 1 for potassium and rubidium doped samples) and the samples have a golden-brown color, similar to stage I graphite. X-ray diffraction reveals a crystalline rope structure with expanded lattice constant, similar to results of Duclaux et al. The change in the low temperature divergence of the resistivity after degassing at high temperature and high vacuum and after K-doping is studied in-situ

    Nonequilibrium quasiparticle distribution in superconducting resonators: analytical approach

    Full text link
    In the superconducting state, the presence of a finite gap in the excitation spectrum implies that the number of excitations (quasiparticles) is exponentially small at temperatures well below the critical one. Conversely, minute perturbations can significantly impact both the distribution in energy and number of quasiparticles. Typically, the interaction with the electromagnetic environment is the main perturbation source driving quasiparticles out of thermal equilibrium, while a phonon bath is responsible for restoration of equilibrium. Here we derive approximate analytical solutions for the quasiparticle distribution function in superconducting resonators and explore the impact of nonequilibrium on two measurable quantities: the resonator's quality factor and its resonant frequency. Applying our results to experimental data, we conclude that while at intermediate temperatures there is clear evidence for the nonequilibrium effects due to heating of the quasiparticles by photons, the low-temperature measurements are not explained by this mechanism.Comment: 22 pages, 8 figure

    Young-type interference in projectile-electron loss in energetic ion-molecule collisions

    Get PDF
    Under certain conditions an electron bound in a fast projectile-ion, colliding with a molecule, interacts mainly with the nuclei and inner shell electrons of atoms forming the molecule. Due to their compact localization in space and distinct separation from each other these molecular centers play in such collisions a role similar to that of optical slits in light scattering leading to pronounced interference in the spectra of the electron emitted from the projectile.Comment: 4 pages, 3 figure

    Development of Spatial Preferences for Counting and Picture Naming

    No full text
    The direction of object enumeration reflects children’s enculturation but previous work on the development of such spatial preferences has been inconsistent. Therefore, we documented directional preferences in finger counting, object counting, and picture naming for children (4 groups from 3 to 6 years, N = 104) and adults (N = 56). We found a right-side preference for finger counting in 3- to 6-year-olds and a left-side preference for counting objects and naming pictures by 6 years of age. Children were consistent in their special preferences when comparing object counting and picture naming, but not in other task pairings. Finally, spatial preferences were not related to cardinality comprehension. These results, together with other recent work, suggest a gradual development of spatial-numerical associations from early non-directional mappings into culturally constrained directional mappings

    Ordered low-temperature structure in K4C60 detected by infrared spectroscopy

    Get PDF
    Infrared spectra of a K4C60 single-phase thin film have been measured between room temperature and 20 K. At low temperatures, the two high-frequency T1u modes appear as triplets, indicating a static D2h crystal-field stabilized Jahn-Teller distortion of the (C60)4- anions. The T1u(4) mode changes into the known doublet above 250 K, a pattern which could have three origins: a dynamic Jahn-Teller effect, static disorder between "staggered" anions, or a phase transition from an orientationally-ordered phase to one where molecular motion is significant.Comment: 4 pages, 2 figures submitted to Phys. Rev.
    • …
    corecore