1,429 research outputs found

    A combined spectroscopic and photometric stellar activity study of Epsilon Eridani

    Get PDF
    We present simultaneous ground-based radial velocity (RV) measurements and space-based photometric measurements of the young and active K dwarf Epsilon Eridani. These measurements provide a data set for exploring methods of identifying and ultimately distinguishing stellar photospheric velocities from Keplerian motion. We compare three methods we have used in exploring this data set: Dalmatian, an MCMC spot modeling code that fits photometric and RV measurements simultaneously; the FF' method, which uses photometric measurements to predict the stellar activity signal in simultaneous RV measurements; and Hα\alpha analysis. We show that our Hα\alpha measurements are strongly correlated with photometry from the Microvariability and Oscillations of STars (MOST) instrument, which led to a promising new method based solely on the spectroscopic observations. This new method, which we refer to as the HH' method, uses Hα\alpha measurements as input into the FF' model. While the Dalmatian spot modeling analysis and the FF' method with MOST space-based photometry are currently more robust, the HH' method only makes use of one of the thousands of stellar lines in the visible spectrum. By leveraging additional spectral activity indicators, we believe the HH' method may prove quite useful in disentangling stellar signals

    Sub-20 nm Core-Shell-Shell Nanoparticles for Bright Upconversion and Enhanced Förster Resonant Energy Transfer.

    Get PDF
    Upconverting nanoparticles provide valuable benefits as optical probes for bioimaging and Förster resonant energy transfer (FRET) due to their high signal-to-noise ratio, photostability, and biocompatibility; yet, making nanoparticles small yields a significant decay in brightness due to increased surface quenching. Approaches to improve the brightness of UCNPs exist but often require increased nanoparticle size. Here we present a unique core-shell-shell nanoparticle architecture for small (sub-20 nm), bright upconversion with several key features: (1) maximal sensitizer concentration in the core for high near-infrared absorption, (2) efficient energy transfer between core and interior shell for strong emission, and (3) emitter localization near the nanoparticle surface for efficient FRET. This architecture consists of β-NaYbF4 (core) @NaY0.8-xErxGd0.2F4 (interior shell) @NaY0.8Gd0.2F4 (exterior shell), where sensitizer and emitter ions are partitioned into core and interior shell, respectively. Emitter concentration is varied (x = 1, 2, 5, 10, 20, 50, and 80%) to investigate influence on single particle brightness, upconversion quantum yield, decay lifetimes, and FRET coupling. We compare these seven samples with the field-standard core-shell architecture of β-NaY0.58Gd0.2Yb0.2Er0.02F4 (core) @NaY0.8Gd0.2F4 (shell), with sensitizer and emitter ions codoped in the core. At a single particle level, the core-shell-shell design was up to 2-fold brighter than the standard core-shell design. Further, by coupling a fluorescent dye to the surface of the two different architectures, we demonstrated up to 8-fold improved emission enhancement with the core-shell-shell compared to the core-shell design. We show how, given proper consideration for emitter concentration, we can design a unique nanoparticle architecture to yield comparable or improved brightness and FRET coupling within a small volume

    Dynamics of the middle atmosphere as simulated by the Whole Atmosphere Community Climate Model, version 3 (WACCM3)

    Get PDF
    The Whole Atmosphere Community Climate Model, version 3 (WACCM3) is a state-of-the-art climate model extending from the Earth's surface to the lower thermosphere. In this paper we present a detailed climatology of the dynamics of the middle atmosphere as represented by WACCM3 at various horizontal resolutions and compare them to observations. In addition to the mean climatological fields, we examine in detail the middle atmospheric momentum budget as well as several lower and upper atmosphere coupling phenomena including stratospheric sudden warmings, the 2-day wave, and the migrating diurnal tide. We find that in large part, differences between WACCM3 and observations and the mean state of the model at various horizontal resolutions are related to gravity wave drag, which is parameterized in WACCM3 (and similar models). All three lower and upper atmosphere coupling processes examined show high sensitivity to the model's resolution

    The Search for an Atmospheric Signature of the Transiting Exoplanet HD 149026b

    Full text link
    HD 149026b is a short-period, Saturn-mass planet that transits a metal-rich star. The planet's radius, determined by photometry, is remarkably small compared to other known transiting planets, with a heavy-element core that apparently comprises ~70% of the total planet mass. Time-series spectra were obtained at Keck before and during transit in order to model the Rossiter-McLaughlin effect. Here we make use of these observations to carry out a differential comparison of spectra obtained in and out of transit to search for signatures of neutral atomic lithium and potassium from the planet atmosphere. No signal was detected at the 2% level; we therefore place upper limits on the column density of these atoms.Comment: 8 pages, 10 figures, 2 table

    Stellar Parameters for HD 69830, a Nearby Star with Three Neptune Mass Planets and an Asteroid Belt

    Get PDF
    We used the CHARA Array to directly measure the angular diameter of HD 69830, home to three Neptune mass planets and an asteroid belt. Our measurement of 0.674+/-0.014 milli-arcseconds for the limb-darkened angular diameter of this star leads to a physical radius of R_* = 0.9058±\pm0.0190 R\sun and luminosity of L* = 0.622+/-0.014 Lsun when combined with a fit to the spectral energy distribution of the star. Placing these observed values on an Hertzsprung-Russel (HR) diagram along with stellar evolution isochrones produces an age of 10.6+/-4 Gyr and mass of 0.863±\pm0.043 M\sun. We use archival optical echelle spectra of HD 69830 along with an iterative spectral fitting technique to measure the iron abundance ([Fe/H]=-0.04+/-0.03), effective temperature (5385+/-44 K) and surface gravity (log g = 4.49+/-0.06). We use these new values for the temperature and luminosity to calculate a more precise age of 7.5+/-Gyr. Applying the values of stellar luminosity and radius to recent models on the optimistic location of the habitable zone produces a range of 0.61-1.44 AU; partially outside the orbit of the furthest known planet (d) around HD 69830. Finally, we estimate the snow line at a distance of 1.95+/-0.19 AU, which is outside the orbit of all three planets and its asteroid belt.Comment: 5 pages, 3 figures, accepted to Ap

    Structure of lanthanum and cerium phosphate glasses by the method of isomorphic substitution in neutron diffraction

    Get PDF
    Neutron diffraction was used to measure the total structure factors for several rare-earth ion R3+ (La3+ or Ce3+) phosphate glasses with composition close to RAl0.35P3.24O10.12. By assuming isomorphic structures, difference function methods were employed to separate, essentially, those correlations involving R3+ from the remainder. A self-consistent model of the glass structure was thereby developed in which the Al correlations were taken into explicit account. The glass network was found to be made from interlinked PO4 tetrahedra having 2.2(1) terminal oxygen atoms, OT, at 1.51(1) Angstrom, and 1.8(1) bridging oxygen atoms, OB, at 1.60(1) Angstrom. Rare-earth cations bonded to an average of 7.5(2) OT nearest neighbors in a broad and asymmetric distribution. The Al3+ ion acted as a network modifier and formed OT-A1-OT linkages that helped strengthen the glass. The connectivity of the R-centered coordination polyhedra was quantified in terms of a parameter f(s) and used to develop a model for the dependence on composition of the A1-OT coordination number in R-A1-P-O glasses. By using recent 17 A1 nuclear-magnetic-resonance data, it was shown that this connectivity decreases monotonically with increasing Al content. The chemical durability of the glasses appeared to be at a maximum when the connectivity of the R-centered coordination polyhedra was at a minimum. The relation of f(s) to the glass transition temperature, Tg, was discussed

    Five Planets Orbiting 55 Cancri

    Get PDF
    We report 18 years of Doppler shift measurements of a nearby star, 55 Cancri, that exhibit strong evidence for five orbiting planets. The four previously reported planets are strongly confirmed here. A fifth planet is presented, with an apparent orbital period of 260 days, placing it 0.78 AU from the star in the large empty zone between two other planets. The velocity wobble amplitude of 4.9 \ms implies a minimum planet mass \msini = 45.7 \mearthe. The orbital eccentricity is consistent with a circular orbit, but modest eccentricity solutions give similar \chisq fits. All five planets reside in low eccentricity orbits, four having eccentricities under 0.1. The outermost planet orbits 5.8 AU from the star and has a minimum mass, \msini = 3.8 \mjupe, making it more massive than the inner four planets combined. Its orbital distance is the largest for an exoplanet with a well defined orbit. The innermost planet has a semi-major axis of only 0.038 AU and has a minimum mass, \msinie, of only 10.8 \mearthe, one of the lowest mass exoplanets known. The five known planets within 6 AU define a {\em minimum mass protoplanetary nebula} to compare with the classical minimum mass solar nebula. Numerical N-body simulations show this system of five planets to be dynamically stable and show that the planets with periods of 14.65 and 44.3 d are not in a mean-motion resonance. Millimagnitude photometry during 11 years reveals no brightness variations at any of the radial velocity periods, providing support for their interpretation as planetary.Comment: accepted to Ap

    An Eccentric Hot Jupiter Orbiting the Subgiant HD 185269

    Get PDF
    We report the detection of a Jupiter-mass planet in a 6.838 day orbit around the 1.28 solar mass subgiant HD 185269. The eccentricity of HD 185269b (e = 0.30) is unusually large compared to other planets within 0.1 AU of their stars. Photometric observations demonstrate that the star is constant to +/-0.0001 mag on the radial velocity period, strengthening our interpretation of a planetary companion. This planet was detected as part of our radial velocity survey of evolved stars located on the subgiant branch of the H-R diagram--also known as the Hertzsprung Gap. These stars, which have masses between 1.2 and 2.5 solar masses, play an important role in the investigation of the frequency of extrasolar planets as a function of stellar mass.Comment: 18 pages, 4 figures, 3 tables, ApJ in press (scheduled for Dec 2006, v652n2

    Youth mental health first aid: a description of the program and an initial evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adolescence is the peak age of onset for mental illness, with half of all people who will ever have a mental illness experiencing their first episode prior to 18 years of age. Early onset of mental illness is a significant predictor for future episodes. However, adolescents and young adults are less likely than the population as a whole to either seek or receive treatment for a mental illness. The knowledge and attitudes of the adults in an adolescent's life may affect whether or not help is sought, and how quickly. In 2007, the Youth Mental Health First Aid Program was launched in Australia with the aim to teach adults, who work with or care for adolescents, the skills needed to recognise the early signs of mental illness, identify potential mental health-related crises, and assist adolescents to get the help they need as early as possible. This paper provides a description of the program, some initial evaluation and an outline of future directions.</p> <p>Methods</p> <p>The program was evaluated in two ways. The first was an uncontrolled trial with 246 adult members of the Australian public, who completed questionnaires immediately before attending the 14 hour course, one month later and six months later. Outcome measures were: recognition of schizophrenia or depression; intention to offer and confidence in offering assistance; stigmatising attitudes; knowledge about adolescent mental health problems and also about the Mental Health First Aid action plan. The second method of evaluation was to track the uptake of the program, including the number of instructors trained across Australia to deliver the course, the number of courses they delivered, and the uptake of the YMHFA Program in other countries.</p> <p>Results</p> <p>The uncontrolled trial found improvements in: recognition of schizophrenia; confidence in offering help; stigmatising attitudes; knowledge about adolescent mental health problems and application of the Mental Health First Aid action plan. Most results were maintained at follow-up. Over the first 3 years of this program, a total of 318 instructors were trained to deliver the course and these instructors have delivered courses to 10,686 people across all states and territories in Australia. The program has also spread to Canada, Singapore and England, and will spread to Hong Kong, Sweden and China in the near future.</p> <p>Conclusions</p> <p>Initial evaluation suggests that the Youth Mental Health First Aid course improves participants' knowledge, attitudes and helping behaviour. The program has spread successfully both nationally and internationally.</p> <p>Trial registration</p> <p><a href="http://www.anzctr.org.au/ACTRN12609000033246.aspx">ACTRN12609000033246</a></p
    corecore