317 research outputs found

    Optical remote sensing (Sentinel-3 OLCI) used to monitor dissolved organic carbon in the Lena River, Russia

    Get PDF
    In the past decades the Arctic has experienced stronger temperature increases than any other region globally. Shifts in hydrological regimes and accelerated permafrost thawing have been observed and are likely to increase mobilization of organic carbon and its transport through rivers into the Arctic Ocean. In order to better quantify changes to the carbon cycle, Arctic rivers such as the Lena River in Siberia need to be monitored closely. Since 2018, a sampling program provides frequent in situ observations of dissolved organic carbon (DOC) and colored dissolved organic matter (CDOM) of the Lena River. Here, we utilize this ground truth dataset and aim to test the potential of frequent satellite observations to spatially and temporally complement and expand these observations. We explored all available overpasses (~3250) of the Ocean and Land Colour Instrument (OLCI) on Sentinel-3 within the ice-free periods (May – October) for four years (2018 to 2021) to develop a new retrieval scheme to derive concentrations of DOC. OLCI observations with a spatial resolution of ~300 m were corrected for atmospheric effects using the Polymer algorithm. The results of this study show that using this new retrieval, remotely sensed DOC concentrations agree well with in situ DOC concentrations (MAPD=10.89%, RMSE=1.55 mg L−1, r²=0.92, n=489). The high revisit frequency and wide swath of OLCI allow it to capture the entire range of DOC concentrations and their seasonal variability. Estimated satellite-derived DOC export fluxes integrated over the ice-free periods of 2018 to 2021 show a high interannual variability and agree well with flux estimates from in situ data (RMSD=0.186 Tg C, MAPD=4.05%). In addition, 10-day OLCI composites covering the entire Lena River catchment revealed increasing DOC concentration and local sources of DOC along the Lena from south to north. We conclude that moderate resolution satellite imagers such as OLCI are very capable of observing DOC concentrations in large/wide rivers such as the Lena River despite the relatively coarse spatial resolution. The global coverage of remote sensing offers the expansion to more rivers in order to improve our understanding of the land-ocean carbon fluxes in a changing climate

    Optical remote sensing (Sentinel-3 OLCI) used to monitor dissolved organic carbon in the Lena River, Russia

    Get PDF
    In the past decades the Arctic has experienced stronger temperature increases than any other region globally. Shifts in hydrological regimes and accelerated permafrost thawing have been observed and are likely to increase mobilization of organic carbon and its transport through rivers into the Arctic Ocean. In order to better quantify changes to the carbon cycle, Arctic rivers such as the Lena River in Siberia need to be monitored closely. Since 2018, a sampling program provides frequent in situ observations of dissolved organic carbon (DOC) and colored dissolved organic matter (CDOM) of the Lena River. Here, we utilize this ground truth dataset and aim to test the potential of frequent satellite observations to spatially and temporally complement and expand these observations. We explored all available overpasses (~3250) of the Ocean and Land Colour Instrument (OLCI) on Sentinel-3 within the ice-free periods (May – October) for four years (2018 to 2021) to develop a new retrieval scheme to derive concentrations of DOC. OLCI observations with a spatial resolution of ~300 m were corrected for atmospheric effects using the Polymer algorithm. The results of this study show that using this new retrieval, remotely sensed DOC concentrations agree well with in situ DOC concentrations (MAPD=10.89%, RMSE=1.55 mg L−1, r²=0.92, n=489). The high revisit frequency and wide swath of OLCI allow it to capture the entire range of DOC concentrations and their seasonal variability. Estimated satellite-derived DOC export fluxes integrated over the ice-free periods of 2018 to 2021 show a high interannual variability and agree well with flux estimates from in situ data (RMSD=0.186 Tg C, MAPD=4.05%). In addition, 10-day OLCI composites covering the entire Lena River catchment revealed increasing DOC concentration and local sources of DOC along the Lena from south to north. We conclude that moderate resolution satellite imagers such as OLCI are very capable of observing DOC concentrations in large/wide rivers such as the Lena River despite the relatively coarse spatial resolution. The global coverage of remote sensing offers the expansion to more rivers in order to improve our understanding of the land-ocean carbon fluxes in a changing climate

    Dissolved organic matter at the fluvial–marine transition in the Laptev Sea using in situ data and ocean colour remote sensing

    Get PDF
    River water is the main source of dissolved organic carbon (DOC) in the Arctic Ocean. DOC plays an important role in the Arctic carbon cycle, and its export from land to sea is expected to increase as ongoing climate change accelerates permafrost thaw. However, transport pathways and transformation of DOC in the land-to-ocean transition are mostly unknown. We collected DOC and aCDOM(λ) samples from 11 expeditions to river, coastal and offshore waters and present a new DOC–aCDOM(λ) model for the fluvial–marine transition zone in the Laptev Sea. The aCDOM(λ) characteristics revealed that the dissolved organic matter (DOM) in samples of this dataset are primarily of terrigenous origin. Observed changes in aCDOM(443) and its spectral slopes indicate that DOM is modified by microbial and photo-degradation. Ocean colour remote sensing (OCRS) provides the absorption coefficient of coloured dissolved organic matter (aCDOM(λ)sat) at λ=440 or 443 nm, which can be used to estimate DOC concentration at high temporal and spatial resolution over large regions. We tested the statistical performance of five OCRS algorithms and evaluated the plausibility of the spatial distribution of derived aCDOM(λ)sat. The OLCI (Sentinel-3 Ocean and Land Colour Instrument) neural network swarm (ONNS) algorithm showed the best performance compared to in situ aCDOM(440) (r2=0.72). Additionally, we found ONNS-derived aCDOM(440), in contrast to other algorithms, to be partly independent of sediment concentration, making ONNS the most suitable aCDOM(λ)sat algorithm for the Laptev Sea region. The DOC–aCDOM(λ) model was applied to ONNS-derived aCDOM(440), and retrieved DOC concentration maps showed moderate agreement to in situ data (r2=0.53). The in situ and satellite-retrieved data were offset by up to several days, which may partly explain the weak correlation for this dynamic region. Satellite-derived surface water DOC concentration maps from Medium Resolution Imaging Spectrometer (MERIS) satellite data demonstrate rapid removal of DOC within short time periods in coastal waters of the Laptev Sea, which is likely caused by physical mixing and different types of degradation processes. Using samples from all occurring water types leads to a more robust DOC–aCDOM(λ) model for the retrievals of DOC in Arctic shelf and river waters

    Induced photon correlations through the overlap of two four-wave mixing processes in integrated cavities

    Get PDF
    Induced photon correlations are directly demonstrated by exploring two coupled nonlinear processes in an integrated device. Using orthogonally polarized modes within an integrated microring cavity, phase matching of two different nonlinear four-wave mixing processes is achieved simultaneously, wherein both processes share one target frequency mode, while their other frequency modes differ. The overlap of these modes leads to the coupling of both nonlinear processes, producing photon correlations. The nature of this process is confirmed by means of time- and power-dependent photon correlation measurements. These findings are relevant to the fundamental understanding of spontaneous parametric effects as well as single-photon-induced processes, and their effect on optical quantum state generation and control

    Arbitrary Phase Access for Stable Fiber Interferometers

    Get PDF
    Well-controlled yet practical systems that give access to interference effects are critical for established and new functionalities in ultrafast signal processing, quantum photonics, optical coherence characterization, etc. Optical fiber systems constitute a central platform for such technologies. However, harnessing optical interference in a versatile and stable manner remains technologically costly and challenging. Here, degrees of freedom native to optical fibers, i.e., polarization and frequency, are used to demonstrate an easily deployable technique for the retrieval and stabilization of the relative phase in fiber interferometric systems. The scheme gives access (without intricate device isolation) to <1.3 × 10−3 π rad error signal Allan deviation across 1 ms to 1.2 h integration times for all tested phases, ranging from 0 to 2π. More importantly, the phase-independence of this stability is shown across the full 2π range, granting access to arbitrary phase settings, central for, e.g., performing quantum projection measurements and coherent pulse recombination. Furthermore, the scheme is characterized with attenuated optical reference signals and single-photon detectors, and extended functionality is demonstrated through the use of pulsed reference signals (allowing time-multiplexing of both main and reference signals). Finally, the scheme is used to demonstrate radiofrequency-controlled interference of high-dimensional time-bin entangled states. © 2021 The Authors. Laser & Photonics Reviews published by Wiley-VCH Gmb

    Scalable and effective multi-level entangled photon states: a promising tool to boost quantum technologies

    Get PDF
    Multi-level (qudit) entangled photon states are a key resource for both fundamental physics and advanced applied science, as they can significantly boost the capabilities of novel technologies such as quantum communications, cryptography, sensing, metrology, and computing. The benefits of using photons for advanced applications draw on their unique properties: photons can propagate over long distances while preserving state coherence, and they possess multiple degrees of freedom (such as time and frequency) that allow scalable access to higher dimensional state encoding, all while maintaining low platform footprint and complexity. In the context of out-of-lab use, photon generation and processing through integrated devices and off-the-shelf components are in high demand. Similarly, multi-level entanglement detection must be experimentally practical, i.e., ideally requiring feasible single-qudit projections and high noise tolerance. Here, we focus on multi-level optical Bell and cluster states as a critical resource for quantum technologies, as well as on universal witness operators for their feasible detection and entanglement characterization. Time- and frequency-entangled states are the main platform considered in this context. We review a promising approach for the scalable, cost-effective generation and processing of these states by using integrated quantum frequency combs and fiber-based devices, respectively. We finally report an experimentally practical entanglement identification and characterization technique based on witness operators that is valid for any complex photon state and provides a good compromise between experimental feasibility and noise robustness. The results reported here can pave the way toward boosting the implementation of quantum technologies in integrated and widely accessible photonic platform

    Generation and processing of complex photon states with quantum frequency combs

    Get PDF
    The development of technologies for quantum information (QI) science demands the realization. and precise control of complex (multipartite and high dimensional) entangled systems on practical and scalable platforms. Quantum frequency combs (QFCs) represent a powerful tool towards this goal. They enable the generation of complex photon states within a single spatial mode as well as their manipulation using standard fiber-based telecommunication components. Here, we review recent progress in the development of QFCs, with a focus on results that highlight their importance for the realization of complex quantum states. In particular, we outline recent work on the use of integrated QFCs for the generation of high-dimensional multipartite optical cluster states - lying at the basis of measurement-based quantum computation. These results confirm that the QFC approach can provide a stable, practical, low-cost, and established platform for the development of quantum technologies, paving the way towards the advancement of QI science for out-of-the-lab applications, ranging from practical quantum computing to more secure communications

    FUmanoid team description 2009

    Get PDF
    Abstract. This document describes hardware and software of the robots developed by the "FUmanoid" Team for the RoboCup competitions to be held in Graz, Austria 2009. The robot has 22 actuated degrees of freedom based on Dynamixel RX28, and RX64 servos. Central Processing, including Machine vision, Planning and control is performed using a Gumstix Verdex 6LP which is an ARM based 600MHz platform. Planning algorithms are organized in a new structure called Concurrent Scenario based Planning (CSBP). This paper explains the software and hardware used for the robot as well as control and stabilization methods developed by our team

    On-chip frequency combs and telecommunications signal processing meet quantum optics

    Get PDF
    Entangled optical quantum states are essential towards solving questions in fundamental physics and are at the heart of applications in quantum information science. For advancing the research and development of quantum technologies, practical access to the generation and manipulation of photon states carrying significant quantum resources is required. Recently, integrated photonics has become a leading platform for the compact and costefficient generation and processing of optical quantum states. Despite significant advances, most on-chip nonclassical light sources are still limited to basic bi-photon systems formed by two-dimensional states (i.e. qubits). An interesting approach bearing large potential is the use of the time or frequency domain to enabled the scalable onchip generation of complex states. In this manuscript, we review recent efforts in using on-chip optical frequency combs for quantum state generation and telecommunications components for their coherent control. In particular, the generation of bi- and multi-photon entangled qubit states has been demonstrated, based on a discrete time domain approach. Moreover, the on-chip generation of high-dimensional entangled states (quDits) has recently been realized, wherein the photons are created in a coherent superposition of multiple pure frequency modes. The timeand frequency-domain states formed with on-chip frequency comb sources were coherently manipulated via off-theshelf telecommunications components. Our results suggest that microcavity-based entangled photon states and their coherent control using accessible telecommunication infrastructures can open up new venues for scalable quantum information science

    Complex quantum state generation and coherent control based on integrated frequency combs

    Get PDF
    The investigation of integrated frequency comb sources characterized by equidistant spectral modes was initially driven by considerations toward classical applications, seeking a more practical and miniaturized way to generate stable broadband sources of light. Recently, in the context of scaling the complexity of optical quantum circuits, these on-chip approaches have provided a new framework to address the challenges associated with non-classical state generation and manipulation. For example, multi-photon and high-dimensional states were to date either inaccessible, lacked scalability, or were difficult to manipulate, requiring elaborate approaches. The emerging field of quantum frequency combs studying spectral multimode sources based on the judicious excitation of (typically) third-order nonlinear optical micro-cavities has begun to address these issues. Several quantum sources based on this concept have already been demonstrated, among them are combs of correlated photons, cross-polarized photon pairs, entangled photon pairs, multi-photon states, and high-dimensional entangled states. While sources have achieved increasing complexity, so have coherent state processing operations, demonstrated in a practical manner using standard telecommunications components. Here, we review our recent work in the development of this framework, with a focus on multi-photon and high-dimensional states. The integrated frequency comb platform thus demonstrates significant potential for the development of meaningful quantum optical technologies
    • …
    corecore