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Arbitrary Phase Access for Stable Fiber Interferometers
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Well-controlled yet practical systems that give access to interference effects
are critical for established and new functionalities in ultrafast signal
processing, quantum photonics, optical coherence characterization, etc.
Optical fiber systems constitute a central platform for such technologies.
However, harnessing optical interference in a versatile and stable manner
remains technologically costly and challenging. Here, degrees of freedom
native to optical fibers, i.e., polarization and frequency, are used to
demonstrate an easily deployable technique for the retrieval and stabilization
of the relative phase in fiber interferometric systems. The scheme gives
access (without intricate device isolation) to <1.3 × 10−3 𝝅 rad error signal
Allan deviation across 1 ms to 1.2 h integration times for all tested phases,
ranging from 0 to 2𝝅. More importantly, the phase-independence of this
stability is shown across the full 2𝝅 range, granting access to arbitrary phase
settings, central for, e.g., performing quantum projection measurements and
coherent pulse recombination. Furthermore, the scheme is characterized with
attenuated optical reference signals and single-photon detectors, and
extended functionality is demonstrated through the use of pulsed reference
signals (allowing time-multiplexing of both main and reference signals).
Finally, the scheme is used to demonstrate radiofrequency-controlled
interference of high-dimensional time-bin entangled states.
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1. Introduction

Interferometers mediate the superposi-
tion of electromagnetic fields to produce
interference patterns. In one of the most
common configurations used—known
as the Michelson scheme (Figure 1a)—
light is split into two equal-energy beams
by a beam-splitter. Following propagation
and reflection, the spatial modes recom-
bine and interfere on the beam-splitter,
with the light intensity at each of the
splitter outputs dependent on the relative
optical phase, determined by the path
length traveled by the two beams (i.e.,
the interferometer imbalance). Length
differences smaller than optical wave-
lengths (e.g., <2000 nm for the infrared
wavelengths used in telecommunica-
tions) have perceivable impacts on the
recombined light’s output intensity, and
thus the coherent mixing of beams has
strict stability requirements. Optical
beam-mixing operations hold relevance
in both the history and the cutting edge
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of physics, e.g., in fundamental studies of light transport,[1]

the characterization of optical coherence properties of light
sources,[2–4] scaling laser power,[5] as well as classical and quan-
tum signal processing and communications;[6–9] thus, stable in-
terferometric systems are critical, ubiquitous tools to modern
science.
While the sensitivity of interferometers to small perturbations

predicates their widespread use for metrology, it is a detriment
when used for coherent signal processing: unintentional pertur-
bations (e.g., mechanical, seismic, thermal effects) easily couple
to the interferometer and, thus, to the beam-mixing procedure
(Figure 1a).Without proper treatment, these errors can reduce in-
terference contrasts and in extreme cases, render interferometers
inoperable (Figure 1b)—an issue that is exasperated when sev-
eral interferometers/operations are concatenated, which limits
the complexity/scalability of signal processing. Being able to dis-
tinguish a signal from such perturbations, accurately reconstruct
the interferometer phase, and/or actively stabilize this phase (in
real time or in post-compensation) is the basis of most appli-
cations. In free-space interferometers, where the beams propa-
gate through air or vacuum, over a century of development has
produced numerous solutions for phase reconstruction; these
include arm dithering,[10,11] adding auxiliary active and passive
optical elements into the arms,[12] using multiple spatial paths
per arm,[13,14] as well as complex and expensive isolation infras-
tructure and light sources.[15] The basis of many of these meth-
ods is the so-called “quadrature condition,” that refers to the use
of two reference signals whose interference responses are offset
from one another by 𝜋

2
(e.g., a sine and a cosine response). Thus,

when one signal is at a minimum in sensitivity to perturbation,
the other signal is at a maximum. This enables a linear, phase-
independent response to perturbations.[12,13,16,17] However, free-
space interferometers are generally neither durable, compact,
nor mass-producible—characteristics required by the demand-
ing frontiers of established and emerging applications (e.g., tech-
nologies deployed as part of telecommunications grids[18,19] and
space-borne instrumentation[20,21]). The technological maturity
of fiber optics should allow to address these requirements, to ac-
cess large length scales (inaccessible to integrated photonics[22])
in a compact footprint, and to enable practical, widespread in-
terferometry. Moreover, fiber plays a central role in the quan-
tum telecommunications infrastructure. Fiber interferometric
systems are particularly critical for time-based data manipulation
(e.g., executing projection measurements on time-bin-encoded
states using imbalanced interferometers[23–26]) with reduced cou-
pling losses versus, e.g., fiber-to-chip coupling. However, stability
and full phase control are not easily achievable in fiber interfero-
metric systems, currently limiting their potential use.
In particular, many free-space components or already-

developed interferometer designs do not have accessible counter-
parts in fiber and generally, deployed optical fiber systems suffer
from larger phase drifts. Several works towards reconstructing
and stabilizing phase in fiber interferometers have thus been
introduced,[27–33] featuring impressive milestones accomplished
through diverse experimental approaches. These include, for
example, the injection of single-frequency reference lasers,[27]

variants of the Pound–Drever–Hall method,[32] modulation of an
interferometer arm,[29–31,33] and explorations of weak references
for phase reconstruction.[28,34] However, present phase-retrieval

Figure 1. Role of optical phase in the operation of an interferometer. a)
Schematic of a standard unbalanced interferometer, here a Michelson-
type commonly used in coherent signal processing. An electromagnetic
wave,Ψin(t) (gray), enters the input port of a beam-splitter (BS), where it is
reflected/transmitted into two, length-unbalanced arms (spatial modes).
Here, the resulting fields are described by ΨA (solid green line) and ΨB
(solid orange line), respectively. Following reflection at the terminating
mirrors (MA,MB) and recombination on the BS, a summed wave,Ψout(t),
is emitted from the two BS output ports (here, only one is shown for sim-
plicity). As the relative phase difference between the two arms varies, the
intensity ofΨout(t) oscillates sinusoidally—the signature effect of interfer-
ometers. Note that for clarity, constant phase shifts arising from, e.g., the
BS are not depicted. b) Environmental perturbations and non-idealities
couple to the operation of the interferometer and degrade the ideal high-
contrast interference (dashed gray line). In practice (solid black line): 1)
optical losses and background events reduce interference contrast (i.e.,
visibility); 2) interferometer phase drifts and instabilities may distort the
fringes; and 3) not all interferometric phasesmay be accessible/resolvable
(depending on the interferometer phase-reconstruction method used).
Phases inaccessible for stabilization using single-color reference-based
schemes (see also Figure 4) are illustrated here.

schemes address some interferometer requirements while
compromising others. These include: 1) introducing ambi-
guities in the reconstructed phase (due to phase-to-feedback
mappings that are not one-to-one[27,28]); 2) making certain
interferometer phases inaccessible for stabilization, or acces-
sible but at the cost of limited resolution or robustness[27–29]

(e.g., by sweeping interferometer delay or optical reference
frequency to follow high-derivative interference points); 3)
demanding increased setup complexities, footprints, and costs
(requiring, e.g., additional radiofrequency routing,[29,32] intri-
cate vibration isolation and temperature controls,[35] dithering
of an interferometer arm[10,29,31,33]); and 4) introducing noise
background photons[10,27,29,31,32] (originating from bright sta-
bilization lasers or their nonlinear/Rayleigh scattering). In
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a recent, impressive demonstration in the context of quan-
tum telecommunications,[34] a phase drift of 19.63 rad ms–1

was post-compensated by probing the interferometric system
phase at microsecond rates by means of weak pulse trains with
alternating, orthogonal (0 or 𝜋

2
) phase encodings. It is, however,

expected that in deployed conditions, much faster phase drifts
will have to be tracked, demanding further investigation into the
constraints of such coherent-state recovery schemes.
Here, targeting this context of phase compensation in fiber in-

terferometric systems, we characterize (using both bright and
dim/photon-level beams) a phase-recovery method that makes
use of quadrature encoding in degrees of freedom well-suited for
inexpensive manipulation and propagation in optical fiber, and
with a particular suitability towards quantumoptics.We study the
use of continuous wave (CW) and pulsed reference signals, show-
ing that the latter has the potential to enable increased quantum
signal-to-noise ratios via the temporal multiplexing of the signal
and reference. Furthermore, we prepare high-dimensional time-
bin entangled quantum states (i.e., the discrete form of energy–
time entangled states[36] with more than two levels) by making
use of a stabilized pulsed laser and integrated microcavity. Then,
using interferometers stabilized with our method, we demon-
strate quantum interference via an atypical degree of freedom:
the carrier-envelope offset (CEO) radiofrequency. Our work thus
supports the readiness of our scheme for advanced use cases, es-
pecially in quantum photonics.

2. Results

Presently, a common inexpensive stabilization technique relies
on coupling a reference CW laser into the interferometer and
measuring the interfered signal (Ix, Figure 2a). This signal
varies as a cosine (Ix(𝜑) = Imid[1 + V cos(𝜑)], where the intensity
Imid =

Imax+Imin

2
and V is the interference visibility) and is used

to extract the interferometer phase 𝜑.[27] While experimentally
straightforward relative to the current state-of-the-art, such a
single-color approach is limited since several phases between
0 and 2𝜋 correspond to the same intensity (that is, the map
from intensity to phase is not one-to-one in this range, e.g.,
𝜑 = 𝜋

2
, 3𝜋
2
both map to Imid). This leads to ambiguities in phase

retrieval, typically requiring the active sweeping of the laser
wavelength or the interferometer delay,[27,29] making it difficult
to reproduce phase settings, or to lock multiple interferometers
to different phases with a single source. However, as the optical
frequency of such an injected signal is changed (e.g., via an
acousto-optic modulator), its cosine response is shifted in phase.
This means that a slightly offset optical frequency component is
sufficient to output a 𝜋

2
-shifted, sine response relative to Ix (i.e.,

the quadrature signal, Iy, Figure 2a). Phase ambiguity is present
when only Ix is acquired, but can be eliminated by measuring
simultaneously the orthogonal signals Ix and Iy. When acquired
together, Ix and Iy map one-to-one to a phase between 0 and 2𝜋
(Figure 2b), allowing for the unambiguous retrieval of the inter-
ferometer phase (see Experimental Section). A very small optical
frequency offset between the two injected signals is required to
maintain a similar period of Ix and Iy. For example, for a portable
interferometer with a 4 ns imbalance in the telecom band at
1550 nm,[9,36] a frequency offset of 188 MHz can be used (see

Figure 2. Retrieving fiber interferometer phase using a two-color reference
signal. a) A two-color (𝜔x and 𝜔y) optical signal, created from a single
source (see main text), is injected into an interferometer, with the ideal
(dashed line) and experimental (acquired with photodiodes, red and blue
markers) interference outputs Ix and Iy shown as a function of the interfer-
ometer phase (referenced at𝜔x , see Experimental Section).𝜔y was chosen
such that Ix and Iy are out of phase by

𝜋

2
. The use of such a reference sig-

nal enables an unambiguous, one-to-one map between the experimental
coordinate pair {Ix,Iy} and the interferometer phase 𝜑 in the range [0,2𝜋).
This is evidenced in (b) depicting the relation of Iy and Ix (Lissajous pat-
tern, with ellipse fit overlaid). c) Scheme of the setup, experimentally re-
alized using off-the-shelf telecommunications components, with the two
parts of the reference prepared to propagate on orthogonal fiber polar-
izations. This enabled straightforward separation of the two finely spaced
reference frequencies 𝜔x and 𝜔y at the detection stage (using only a polar-
izing beam-splitter rather than expensive filters) for phase extraction and
stabilization. In parallel, an input signal under test co-propagates in the
unbalanced interferometer (built to provide an 11.5 ns imbalance). As the
frequency difference between the signal under test and the reference sig-
nal can be chosen to be on the order of hundreds of gigahertz, they can be
easily separated by using an off-the-shelf, band-stop filter.

Experimental Section). However, most off-the-shelf filters cannot
separate such finely spaced frequencies for the simultaneous
measurement of the two interferences. Towards this end, we
exploit the polarization degree of freedom—easily controlled and
propagated with minimal cross-talk in fiber optics—to prepare a
reference signal where Ix and Iy travel in orthogonal polarization
modes of the fiber (Figure 2c and Experimental Section). The
two-color reference signal is prepared from one source, which is
split into a passive and an acousto-optic modulated arm to create
the frequency-shifted, orthogonally polarized, Ix and Iy compo-
nents. This reference signal is fed into the interferometer. Once it
is interfered and output, an off-the-shelf fiber polarization beam-
splitter (rather than an expensive, custom-made filter) is used to
split the two frequencies for detection of the intensities Ix and Iy.
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Figure 3. Long-term interferometric phase stability. Phase drift in a fiber interferometer reconstructed in-loop from our error signal without (left) and with
(right) active phase recovery and feedback. When the fiber-stretcher/digital-to-analog converter voltage limits are reached, the target phase is preserved
by the stabilization algorithm enacting a fast, cyclic shift of 2𝜋 (see step-like transitions on the right). Such long-term stability is particularly important
for long measurements, e.g., those related to quantum state tomography. Inset: Spectral density of the reconstructed phase (see Experimental Section)
in the presence (blue) and absence (red) of active stabilization, demonstrating an order of magnitude reduction in phase change for most spectral
components, particularly the low and intermediate frequencies currently accessible with the speed of our feedback loop.

Note also that this signal can be prepared once and distributed
among several interferometers, providing a common reference.
With the additional use of passive stabilization methods (me-

chanical damping), perturbations were limited to frequencies
below tens of kilohertz. Consumer-grade, portable digital elec-
tronics were then easily integrated into the system for phase
retrieval and real-time correction (see Experimental Section;
similarly, low-footprint electronics can also provide the AOM
driving signal), with on-the-fly phase tunability via a fiber
stretcher in one of the arms. Tracking and compensating for
fluctuations enables long-term phase stability (relative to our
reference, i.e., measured in-loop, Figure 3), as required for many
measurements with long integration times and common optical
references (e.g., quantum state characterization). Alternatively,
without real-time stabilization, if our reference signal is tracked
through the duration of a measurement, the phase could be
post-compensated/post-selected. Such interferometric phase-
tracking schemes for post-compensation are already used in
several application domains.[37–39]

An issue in phase-recovery schemes based on the use of
a single interference signal (without sampling an orthogonal
component) is that phase perturbations are not equally re-
solvable across all phases. This limits the range of accessible
interferometric phase values, unless, e.g., the reference laser
frequency or interferometer delay is actively tuned to follow
sensitivity maxima,[27,29] which however, introduces issues of
setup complexity and reduced reproducibility. Looking at the
example of a single-color reference signal (which, while not
the most advanced, has a low experimental complexity com-
parable to our method), the response of the feedback signal to
phase changes (the so-called system “sensitivity”) is described
by S ∝ | dIx

d𝜑
| = |VImidsin(𝜑)|. The sensitivity, and by proxy the

accuracy of phase retrieval (relative to the optical reference), can
be seen to be extremely phase dependent, with minima at the

0 and 𝜋 phases. This restricts the range of phases accessible
using such a feedback signal (Figure 4a). Instead, using our two-
colored feedback signal, comprising the in-phase and quadrature
components, makes the sensitivity constant for all phases, as

S ∝ | d(Ix+iIy)
d𝜑

| = | − VImidsin(𝜑) + iVImidcos(𝜑)| = VImid. As a
result, all phases [0,2𝜋) are individually accessible (Figure 4a)
with phase-independent stabilization performance (Figure 4b).
This is demonstrated even more directly via Allan error signal
deviation analysis for different integration times (Figure 4c and
Experimental Section). Moreover, we observe an Allan deviation
of 5.89× 10–5 𝜋 rad (in-loop, equivalent to 0.04 nm at 1550 nmop-
tical wavelength) at an integration time of 2:11 min (and even at
integration times of 1 h 9min, this value remains below 1× 10–3 𝜋
rad). This value outperforms most other implementations in the
state of the art (see Table S1, Supporting Information), and is
also unique in its practical, inexpensive, real-time stabilization.
Several fields that require coherent optical processing can ben-

efit from our scheme: quantum optical state processing consti-
tutes an application with some of the most strict and demand-
ing requirements. Specifically, our scheme gives access to long
integration times for photon signals, and unambiguous, uni-
form stability across all phase projection measurements. These
are required for complete quantum state characterization (to-
mography), high-visibility quantum interference, and repeatable
quantum operations—measurements demonstrated (using our
scheme for real-time stabilization) in the context of recent 2D
and high-dimensional time-bin entanglement works.[9,40,41]

Further supporting the quantum use case for our scheme,
we show the radiofrequency-controlled quantum interference of
high-dimensional time-bin entangled states prepared using an
integrated source, see Figure 5. It is important to note that while
our past measurements using this stabilization scheme[9,23]

exploited a common optical reference across both state prepa-
ration and characterization stages, for this measurement we
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Figure 4. Use of the two-color reference signal enabling phase-
independent interferometer stabilization. a) The interferometric phase is
stabilized from 0 to 2𝜋 in steps of 0.05 𝜋, using both single-color (red) and
two-color (blue) phase-stabilization algorithms (see Experimental Sec-
tion) in the feedback loop. The single-color feedback system is unable to
stabilize at the minima points of its sensitivity ({0,𝜋}) and has an increas-
ing error when approaching these points. In contrast, the two-color feed-
back system has stable access to all phases in the range [0,2𝜋) while main-
taining a similarly low setup complexity. b) System phase stabilization as a
function of the target interferometer phase (plotted in polar coordinates,
with a logarithmic radial axis). The points correspond to the Allan error
signal deviation value at an integration time of 131 s (vertical gray bar in
(c)). The single-color method (left) demonstrates a decrease in stability
approaching its sensitivity minima at 0 and 𝜋, while the two-color method
(right) has a largely uniform stability across all phases in the [0,2𝜋) range.
c) Allan deviation analysis of the phase error signal (see Experimental Sec-
tion) over a range of integration times. While the two-color stabilization
(right) shows near-identical in-loop stability between all target phases, the
single-color Allan deviation magnitudes vary greatly between phases. As

use independent optical sources for state preparation (a pulsed,
commercial frequency comb source) and interferometer sta-
bilization (a separate, i.e., out-of-loop, CW source with low
frequency jitter). In particular, the frequency comb’s parameters
are stabilized with respect to atomically referenced, tunable
radiofrequencies (as part of a turn-key MENLO system, see
Experimental Section). When this pulsed excitation is used to
prepare a time-bin entangled state (as a pump source), the phase
encoded in the qubits linearly corresponds to the pulse-to-pulse
phase 𝜃CEO;

[9,23,42] thus, such radiofrequencies (particularly the
CEO frequency reference, which defines 𝜃CEO

[43]) may be impor-
tant degrees of freedom for, e.g., quantum optical metrology.[44]

Using this comb source for the excitation of signal-idler photon
pairs, together with the independent CW source to stabilize the
interferometer phase at 0𝜋 (Figure 5a), we show that the CEO ra-
diofrequency is an accessible degree of freedom to demonstrate
quantum interference (Figure 5b,c). We note that the associated
interference periodicity depends on whether the interferometer
arm length corresponds to 1× or 2× the repetition rate, i.e., a de-
lay of 4 or 8 ns in our case (Figure 5c). The potential use of such
low-power interference measurements for the stabilization and
perhaps the direct extraction of mode-locked laser CEO frequen-
cies bears further investigation. The successful demonstration
of quantum interference using independent optical sources for
the pump and interferometer reference (albeit with very high
stability metrics, see Experimental Section) also suggests that
constraints in future quantum experiments may be relaxed.
A number of quantum photonics experiments and technolo-

gies demand minimal background photon counts, which bright
stabilization lasers (in wavelength regions near the quantum sig-
nal bands) and limited filtering cannot always provide, bringing
about nonnegligible cross-talk. We investigate two directions that
may resolve this issue for such delicate application cases. First,
we implement a heavy attenuation of the bichromatic CW refer-
ence signal (prior to injection into the interferometer) to produce
a few-photon interference response (measured using single-
photon detectors, see Figure 6a). This is an attractive solution,
as the low-power probe signal no longer requires high rejection
filters, meaning even off-the-shelf DWDM (dense wavelength
division multiplexing) filters can reduce cross-talk. Such atten-
uated coherent states have been investigated for interferometer
phase reconstruction[45] and experimentally demonstrated in a
single-color stabilization scheme to lock on one phase.[28] Here,
we extend these efforts and investigate the use of two attenuated
coherent states in quadrature for phase-retrieval. Measuring the
in-phase and quadrature signal outputs at one interferometer
port (Figure 6a), we illustrate the trade-off, brought about by the
Poissonian statistics governing coherent states, between the
phase estimation error and the signal integration time (i.e.,
better phase estimation for longer integration times and higher
reference signal powers, see Experimental Section). These statis-
tics give rise to a phase dependence in the phase estimation error
(Figure 6b, a dependence removed when both output ports are

the single-color retrieval could not be stabilized at 0 and 𝜋, measurements
were instead performed at ±0.09𝜋 of these points. Error bars correspond
to the standard deviation calculated from three measurements.
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Figure 5. Quantum interference of time-bin entangled photons generated via a stabilized frequency comb source. a) A frequency comb is used to
excite a single resonance of an integrated microcavity to generate time-bin entangled photon pairs via spontaneous four-wave mixing.[9] The signal and
idler are then split and interfere in fiber interferometers stabilized (using our scheme) on a constant, zero phase. The coincidence between the two
channels is then measured and correlated using single-photon detectors and time-tagging electronics. The frequency comb repetition rate and carrier-
envelope frequencies are both stabilized with respect to a Rubidium reference clock. As the CEO frequency setpoint (given by a radiofrequency tone)
is swept, quantum interference is observed in the coincidence events (b). Projections on |1⟩ + |2⟩ versus |1⟩ + |3⟩ are made available by switching the
interferometer arm fibers to access different length imbalances (4 and 8 ns respectively, corresponding to 1× and 2× the frequency comb pulse period).
The CW laser used to stabilize the two interferometers is not referenced or locked to the frequency comb or atomic reference—the two sources are
independent (i.e., out-of-loop). c) Quantum interference measurements for the time-bin encoded photon states, accomplished by sweeping the CEO
frequency of the comb source. The raw visibilities for the interference between quantum time-bins one and two periods apart are, in this case, 88.4%
and 87.3%, respectively (without any locking of the pump and reference lasers).

used). For experiments where these detriments can be tolerated
in exchange for reduced cross-talk, we append a heat map illus-
trating the trade-off between these parameters (Figure 6c). In
practice, the integration time should be chosen so that the fastest
phase drifts can be resolved. The count rate will be limited by
the saturation point of the detectors used, the maximum power
available from the optical reference, or the maximum power
allowed that still minimizes cross-talk to acceptable boundaries.
Second, the stabilizing laser in the scheme does not have to be

CW (CW references produce background noise photons over all

detection time windows). Mode-locked sources (and especially
stabilized frequency combs, see Experimental Section) have
sufficient coherence lengths to produce interference signals
(Figure 7a), a characteristic already exploited in the context
of classical optics[46] as well as quantum communications,[34]

and here implemented with our Ix/Iy reference scheme. In the
context of quantum optics, the use of these pulsed sources allows
new functionalities for interferometric systems. In particular,
when a pulsed laser is used within our scheme as a reference,
its induced photon background becomes limited to distinct
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Figure 6. Experimental considerations for interferometer phase estimation using attenuated coherent states. a) Photon count rates for the in-phase and
quadrature channels, measured with two single-photon detectors as the interferometer phase is swept. Increasing the signal integration time shows an
increase in phase estimation accuracy. b) The phase dependence of the estimation error for this method, arising from the Poissonian statistics governing
coherent states, determined analytically (red curve, see Experimental Section) and from the average of 10 000 Monte Carlo simulations (black curve).
c) Average phase estimation error as a function of photon flux and integration time. The maximum phase drift rate, maximum allowable phase error,
and single-photon detector saturation rate are the key parameters for deciding the experimental values of count rate and integration time to be used.
We denote two example bounds: bound 1, based on the data corresponding to our interferometer system (our system’s detector saturation rate is also
illustrated), and bound 2, based on data from a recent work making use of a 275 km fiber interferometric system[18] (see Experimental Section). White
markers indicate our expected performance with the three integration times demonstrated in (a).

temporal modes that can be delayed with respect to the quantum
input being interfered. This background can then either be sup-
pressed via time-gating, or post-selected in analysis. A fast photo-
diode can then be used to track the phase from pulse to pulse or
otherwise, a slower photodiode can effectively integrate over the
signal if simpler electronics are required (Figure 7a). Reducing
resource requirements further, the pulsed reference can be atten-
uated to the few-photon level (alike to Figure 6) and the in-phase
and quadrature components of the feedback signal can be tempo-
rally delayed with respect to one another (via a tunable fiber im-
balance on the AOM arm). Such an approach, which resembles
temporally interleaved quadrature sampling techniques from
the field of digital signal processing,[47,48] allows us to retrieve the
interferometer phase information using only one single-photon
detector (Figure 7b). While requiring less infrastructure, the
non-simultaneous measurement of the in-phase and quadrature
signals will give rise to a phase-dependent error in the phase
reconstruction, brought about by phase drifts between these
samples (Figure 7c; such small errors are negligible for most ap-
plications, we note, e.g., themaximumphase drift vT is<10mrad
in a recent literature example[34]), on top of the aforementioned
noise contributions arising from Poissonian photon statistics.
These analyses generalize to any coherent states in quadrature
used for phase reconstruction (i.e., also in degrees of freedom
alternative to polarization). As coherent-state phase-retrieval
techniques of this type have recently been introduced into the
context of quantum communications,[34] these considerations
may be of use for extending such systems to realizations deployed
out-of-lab (where faster phase drifts will have to be compensated).

3. Conclusion

In closing, we have realized a practical and accessible scheme for
the unambiguous retrieval of phase in the fiber interferometer
platform without the need to dither or sweep the stabilizing laser
frequency, demonstrating long-term stability, access to all phase
values, as well as new interference control variables. We have
additionally characterized the use of the scheme with dim refer-
ence beams, presenting reduced background photon counts, and
as well, we have analyzed operational considerations brought
about by resource constraints. In extensions of the scheme, we
expect that single-photon-level, quadrature-encoded reference
signals may also find appropriate use cases where it is mandatory
to avoid stimulated processes (e.g., high-power signals, complex
photonic chips) or where minimal system disturbances are
important (e.g., quantum ranging[49]). The method presented
here is limited to unbalanced interferometer applications (as
equal arm lengths cannot provide the required phase-offset in
reference components, making other schemes[12] more suitable
for balanced interferometer stabilization); it is not suited for
use with reference lasers with unstable optical powers unless
forced calibration steps or algorithmic upgrades are included (in
contrast to, e.g., methods based on minimizing dither tones[29]);
and it is best suited towards Michelson-like configurations, as
extending our method to others, e.g., the Mach–Zehnder, would
require supplementary polarization control. Future work on this
method will focus on further increasing stability and phase reso-
lution through the use of higher bit-depth and faster electronics
(see Experimental Section), performing out-of-loop stability
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Figure 7. Interferometry with a pulsed optical reference in quadrature. a) Slow (2.1 kHz, top) and fast (50 GHz, bottom) photodiode traces of the
interferometer output when a frequency comb laser is used in the scheme (Figure 2c). Importantly, the interferometer arm difference is matched to the
laser repetition rate (or itsmultiple). The signals Ix and Iy thenmaintain orthogonality and continue to allow unambiguous phase retrieval, while confining
reference-induced background photon counts to specific time windows. b) Use of an attenuated pulsed reference. The in-phase and quadrature signals
can be offset by a time T (here with a delay line) with respect to processed quantum inputs to increase their signal-to-noise ratio. Here, we offset a signal
under test with respect to the pulsed references, and feed it into a single, triggered photon-detector. We find that the reference background maintains
orthogonality, meaning a single detector can retrieve both a signal under test and its corresponding phase mapping. c) The error in reconstructed phase
induced when the in-phase and quadrature signals are measured at times +T and –T relative to the signal under test, respectively, and in the presence
of a linear phase drift rate v.

measurements using additional optical sources and longer
fibers (determining scheme appropriateness beyond coherent
signal processing), extending the scope of the demonstrated
scheme to interferometers with more arms (as required for, e.g.,
high-dimensional statemanipulation without cascading two-arm
interferometers), as well as to integrated interferometers.[50,51]

4. Experimental Section
CW Reference Signal Preparation: The reference signal was a low-

frequency jitter CW source (NKT Koheras BASIK E15, 1550 nm central
wavelength, 40 mW optical power, <2 kHz bandwidth, coherence length
above 47.7 km ≫ the maximum 2.3 m interferometer imbalance (equiv-
alent to 11.5 ns) used in the measurements). Half of the output was used
as the Ix signal component, while the other half was frequency up-shifted
by 𝛿f using an acousto-optic modulator (Brimrose TEMF-200-40-30-1500-
2FP) driven by an RF synthesizer (Tektronix AWG701B) and RF amplifier
(Kune Electronic Microwave Components KU-PA-BB-005250-2A) to
produce the Iy signal component. In order to satisfy the orthogonality
criterion for the two components, the RF signal amplitude was adjusted
to provide near-equal interference amplitudes for Ix and Iy, and 𝛿f was
made equal to c

(4ng⋅ΔL)
(2n + 1), where c is the speed of light in vacuum, ng

is the effective group index of refraction, ΔL is the total length imbalance

between the two interferometer paths, and n is an integer (kept as small
as possible to ensure comparable periodicity between Ix and Iy). As
the length imbalance (or equivalently, the relative time delay) of the
demonstrated interferometer was 11.5 ns (and 4/8 ns for Figure 5), the 𝛿f
in the experiments was 196 MHz (and 188/218 MHz)—chosen to suit the
bandwidth of our acousto-optic modulator. Ix and Iy were then made to
co-propagate in a single fiber but on orthogonal polarization axes through
the use of a 2 × 1 polarizing beam-splitter—the Ix and Iy components were
then injected into the fiber interferometer. The fibers used in the reference
signal preparation were all polarization-maintaining (for added environ-
mental stability), while the interferometer was composed of single-mode
fibers (mechanically dampened with steel plates). Faraday mirrors in the
interferometer compensate for birefringence effects experienced during
propagation.

Signal Acquisition and Phase Reconstruction: The reference signal inter-
feres at the interferometer beam-splitter, the two arms having experienced
a relative phase shift of 𝜑 = 2𝜋ng ⋅ ΔL ⋅ f ∕c, where f is the frequency of the
input light (thus each of the two colors acquires a different phase). The
two colors were then split apart at the output using a polarizing beam-
splitter, and the two intensities Ix and Iy were acquired using two pho-
todiodes (Thorlabs PDA50B, 235 kHz bandwidth). The phase was then
reconstructed (relative to the optical reference) using

𝜑 = arctan2

[
2Iy − Imax

y − Imin
y

Imax
y − Imin

y

,
2Ix − Imax

x − Imin
x

Imax
x − Imin

x

]
(1)
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where arctan2 is the two-argument arctangent function, while Imax and Imin

correspond to the interference maxima and minima, respectively.
For the case of a single-color reference (Figure 4), the Ix signal was used

on its own to probe the interferometer phase. The phase was then re-
constructed as 𝜑 = arccos [2(Ix − Imin

x )∕(Imax
x − Imin

x ) − 1]. Generally, this
method can only stabilize phase values in the range (0,𝜋);however, we
stabilized on target phases in the (𝜋,2𝜋) range by inverting the sign of
the feedback signal. This single-color stabilization was accomplished with
no physical changes to the setup, only modifying the phase stabilization
algorithm in the feedback loop.

Phase Stabilization Feedback Loop: In this realization, the photodi-
ode voltage outputs were fed into a microcontroller (Arduino Due, 12-
bit analog-to-digital converter, 12-bit digital-to-analog converter, 84 MHz
clock rate), which then reconstructed the interferometer phase 𝜑 in real
time using these signals (see phase reconstruction above). The associ-
ated error ϵ = 𝜑* – 𝜑, from the target phase 𝜑*, was then used as the
feedback signal in a proportional–integral–derivative feedback loop to ad-
just a fiber-stretcher-based phase shifter (General Photonics, FPS-001,
maximum bandwidth 20 kHz—note the feedback signal was limited in
speed to fit this bandwidth) placed in one of the interferometer arms.
All presented data were collected by monitoring Ix and Iy with a separate
analog-to-digital converter (National Instruments DAQ System, models
PCI 6251+BNC2090, 16-bit analog-input, 1.0 MS s–1 aggregate sampling
rate) and acquisition computer, with these signals being subsequently
used to reconstruct the phase using Equation (1).

Frequency-Domain Analysis of Long-Term Stabilization: In the inset of
Figure 3, the spectral characteristics of the reconstructed phase, 𝜑(t) (cal-
culated from the reference interference signals Ix and Iy), were analyzed.
The phase signal was extracted using Equation (1) and phase-unwrapped.
The spectral density of the reconstructed interferometer phase signal is
proportional to |F(𝜑(t))|2, and is normalized by the measurement band-
width, where F is the one-sided Fourier transform. The inset of Figure 3
displays the average spectral density of four reconstructed phase signals.

Allan Deviation Measurements: In Figure 4b,c, the stability of the re-
constructed phase was evaluated using the Allan deviation, a metric
first introduced in the context of clocks/frequency references and that
describes the stability of the interferometric phase over different time
scales.[52,53] Here, we used the Allan deviation expression given by

𝜎 (𝜏) =

√√√√ 1
2M

M−1∑
m=1

(
�̄�m+1 − �̄�m

)2
(2)

where �̄� is the average of 𝜑(t) over an integration time 𝜏, with m be-
ing an index of consecutive averages, and M = m𝜏. At short integration
times, averaging removes high-frequency fluctuations in the interferom-
eter phase signal. However, above ≈100 s integration time, the system
reaches a noise floor where the noise is dominated by non-stationary noise
sources, such as random walk and drift, causing an increase in the Allan
deviation.[54] This noise is likely caused by power drifts in the reference
signal, which can lead to drifts away from the initial system calibration.

CEO Frequency Control of Quantum Interference: The setup was
changed to that in Figure 5a. Here, a stabilized frequency source (Menlo
FC1500-250-WG, 250 MHz repetition rate) was used to excite a single res-
onance of a nonlinear microcavity to generate time-bin entangled pho-
ton pairs (namely, signal, and idler) described by the quantum state|1⟩s|1⟩i + ei𝜃|2⟩s|2⟩i + ei2𝜃|3⟩s|3⟩i, where |k⟩ (k = 1,2,3) denote a time-bin
quantum state and “s” and “i” denote the signal and idler photon, respec-

tively. Here, the pulse to pulse phase 𝜃 is described by 2𝜋fCEO
frep

where fCEO
corresponds to the CEO frequency (sweepable via a radiofrequency input
into the Menlo system), and frep corresponds to the pulse repetition rate
(here, set constant to 250 MHz). Both the signal and idler interferometer
phases were kept constant at 0 rad (relative to a CW-based reference sig-
nal), 𝜃 was then swept by changing the radiofrequency input over an acces-
sible range of 10–115 MHz. After exiting the interferometers, the photons
impinged onto two independent detectors (Quantum Opus) and time-
tagging electronics (Picoquant Hydraharp). The quantum interference was

then computed by post-selecting the interfered time-bin for the two chan-
nels, cross-correlating these counts to determine the second-order corre-
lation function (g2si, Figure 5b), and then fitted with a Glauber function and
a Gaussian (signal and background, respectively) to determine the nor-
malized counts. Note that, as described above, the laser sources used for
state preparation and interferometer stabilization were independent, and
demonstrated a maximum relative frequency drift rate of ≈270 kHz h–1,
corresponding to a<0.01𝜋 rad h–1 interferometer drift (which is negligible
relative to the total 2 h integration time for each of our quantum interfer-
ence measurements).

Single-Photon Reference Signal Preparation and Measurement: For
the attenuated-laser reference signal measurements in Figure 6, a
polarization-maintaining variable optical attenuator was inserted im-
mediately before the two-color reference signal was injected into the
interferometer. The rest of the setup was kept the same as in Figure 2c,
with the exception of the photodiodes replaced with two superconducting
nanowire single-photon detectors (Quantum Opus, one for Ix and one
for Iy), connected to time-tagging electronics (Picoquant Hydraharp).
For Figure 6a, the fiber stretcher in the interferometer arm was then
swept, and the photon arrival times at each channel collected. A moving
integration window was then implemented in post-selection to determine
both the count rates and the integration-time response of the system.

Figure 6b,c, presents the analysis of the phase estimation errors intro-
duced by a quadrature-based reference using coherent states, which follow
Poissonian statistics. The mean photon number of each quadrature chan-
nel is n̄x =

n̄
2
(1 + Vcos(𝜑)) and n̄y =

n̄
2
(1 + Vsin(𝜑)), where V is the in-

terference visibility, n̄ is the input mean photon number, and each channel
has varianceΔnx,y2 = n̄x,y. Propagating this variance through Equation (1),
the mean squared phase error is (Figure 6b, solid red line)

Δ𝜑2
est =

2
V2n̄

(
1 + Vsin (𝜑) cos2 (𝜑) + Vsin2 (𝜑) cos (𝜑)

)
(3)

which scales in agreement with the standard quantum limit.[28,45] If, in-
stead, both output arms of the interferometer were monitored using a
difference detection scheme (i.e., the corresponding reference signals at
each output arm are subtracted from each other), this phase-dependent
error is removed and Δ𝜑2

est =
1

V2 n̄
(Figure 6b, solid purple line). However,

suchmonitoring requires increased costs and complexity as two additional
single-photon detectors are needed.

Experimentally, the mean photon number is the product of the de-
tector integration time, 𝜏, and the photon flux rate, Φ, both of which
may be bounded by implementation considerations (Figure 6c) such
as the maximum phase drift velocity present (v), detector saturation
rate, or maximum permissible phase estimation error (Δ𝜑max). For the
bounds on integration time in Figure 6c, the definition that was used is
𝜏 ≤ Δ𝜑max∕v. Bound 1 is based on data from the system presented in this
work, i.e., Δ𝜑max = 𝜋 × 10−3 rad (from Figure 4) and v = 0.071 rad s–1

(identified as the fastest phase drift in the unstabilized trace of Figure 3).
Bound 2 is based on data from Lucamarini et al.[18] for an interfero-
metric system with arm lengths of 275 km, with v = 1.0 rad ms–1 and
assuming Δ𝜑max = 𝜋∕16 (corresponding to half the phase slice size
employed).

Pulsed Reference Signal Preparation and Measurement: This setup is
identical to the one used with the CW reference (Figure 2c), but with
the original laser source replaced with a stabilized frequency comb out-
put (Menlo FC1500-250-WG, 250 MHz repetition rate) filtered down to a
200 GHz optical bandwidth using band-pass filters and amplifiers (San-
tec and Lightwave 2020, Pritel SPFA). For Figure 7a, the integrating pho-
todiodes used (Thorlabs PDA50B, 2.1 kHz bandwidth acquired with the
National Instruments DAQ System PCI 6251+BNC2090) were slow with
respect to the signal repetition rate and acted as a signal integrator. On the
other hand, the fast photodiodes (Finisar XPDV, 50 GHz bandwidth) were
connected with a high-bandwidth oscilloscope to reproduce the pulse train
interference (Agilent DSO-X 92804A, 28 GHz bandwidth, 80 GSa s–1).

In the reference signal preparation (Figure 2c), the source was equally
split into two different paths to introduce a frequency shift with the AOM
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on one of them. Before recombination, an optical delay line is added to im-
plement a relative time difference between Ix and Iy (Figure 7b). The injec-
tion of this temporally interleaved reference signal into the interferometer
can then be adjusted with another delay line to enable time-multiplexing
with the signal under test. The detector-triggered signal is provided by
the frequency comb pulse train. In post-processing, the different temporal
channels (Figure 7b) can then be easily separated to reconstruct the re-
spective signals. The presented data were acquired for 120 s with an inte-
gration time of 100ms (this corresponds to averaging overmany sampling
cycles).

Temporal offsets between Ix, Iy, and the signal under test introduce
phase estimation errors (Figure 7c), as fast fluctuations in fiber length can
impart different interferometric phases onto each of these components. To
estimate the maximum error that could be introduced from such tempo-
ral interleaving, a maximum phase drift rate of v that is changing linearly
over the total reference time window was assumed. Ix and Iy are separated
in time from the signal under test by +T and –T, respectively, with mea-
sured intensities Ix(𝜑 + vT) and Iy(𝜑 − vT). When comparing the phase
estimated from these shifted reference signals (using Equation (1)) and
the interferometer phase at the signal under test (𝜑), a phase-dependent
error arises (Figure 7c). For small values of vT, the maximum observed
error is equal to vT; however, as this product increases, the maximum er-
ror begins to scale nonlinearly and the phase-dependent error plotted in
Figure 7c becomes skewed.
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