14 research outputs found

    Developmental regulation of mitochondrial apoptosis by c-Myc governs age- and tissue-specific sensitivity to cancer therapeutics

    Get PDF
    It is not understood why healthy tissues can exhibit varying levels of sensitivity to the same toxic stimuli. Using BH3 profiling, we find that mitochondria of many adult somatic tissues, including brain, heart, and kidneys, are profoundly refractory to pro-apoptotic signaling, leading to cellular resistance to cytotoxic chemotherapies and ionizing radiation. In contrast, mitochondria from these tissues in young mice and humans are primed for apoptosis, predisposing them to undergo cell death in response to genotoxic damage. While expression of the apoptotic protein machinery is nearly absent by adulthood, in young tissues its expression is driven by c-Myc, linking developmental growth to cell death. These differences may explain why pediatric cancer patients have a higher risk of developing treatment-associated toxicities

    Adenoviral Mediated Delivery of OSKM Factors Induces Partial Reprogramming of Mouse Cardiac Cells In Vivo

    Get PDF
    The induction of in vivo reprogramming toward pluripotency has been demonstrated in several tissues utilizing either transgenic inducible mice or gene delivery approaches. However, the effects of exogenous reprogramming factor expression in the mammalian heart have not been previously reported. The present study aims to investigate the response of cardiac cells to ectopic Oct3/4, Sox2, Klf4, and cMyc (OSKM) expression in vivo using a non-integrating adenoviral vector. Direct intramyocardial injection of this vector achieves effective and transient OSKM overexpression in the healthy heart and after myocardial infarction. The expression of these factors induces transient upregulation of a number of endogenous pluripotency (endo-Oct3/4, Gdf3) and reprogramming related (Cdh1, Fut4) genes, confirming the induction of cell reprogramming. Despite the initiation of reprogramming, markers of fully de-differentiated cells including Nanog remain silenced, consistent with a partially reprogrammed state. Furthermore, no indications of tumorigenesis or teratoma formation are observed. Overall, these data suggest that adenoviral mediated OSKM delivery can be utilized to induce partial in vivo reprogramming. However, the absence of any clear regenerative effects after myocardial infarction indicates that further optimization of vector mediated reprogramming strategies is essential to overcome barriers to therapeutic efficacy

    Kruppel-like factor 15 is a regulator of cardiomyocyte hypertrophy

    No full text
    Cardiac hypertrophy is a common response to injury and hemodynamic stress and an important harbinger of heart failure and death. Herein, we identify the Kruppel-like factor 15 (KLF15) as an inhibitor of cardiac hypertrophy. Myocardial expression of KLF15 is reduced in rodent models of hypertrophy and in biopsy samples from patients with pressure-overload induced by chronic valvular aortic stenosis. Overexpression of KLF15 in neonatal rat ventricular cardiomyocytes inhibits cell size, protein synthesis and hypertrophic gene expression. KLF15-null mice are viable but, in response to pressure overload, develop an eccentric form of cardiac hypertrophy characterized by increased heart weight, exaggerated expression of hypertrophic genes, left ventricular cavity dilatation with increased myocyte size, and reduced left ventricular systolic function. Mechanistically, a combination of promoter analyses and gel-shift studies suggest that KLF15 can inhibit GATA4 and myocyte enhancer factor 2 function. These studies identify KLF15 as part of a heretofore unrecognized pathway regulating the cardiac response to hemodynamic stres
    corecore