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Developmental regulation of apoptosis in healthy tissues
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SUMMARY 

 

It is not understood why healthy tissues can exhibit varying levels of sensitivity to the same toxic 

stimuli. Using BH3 Profiling, we find that mitochondria of many adult somatic tissues, including 

brain, heart and kidneys, are profoundly refractory to pro-apoptotic signaling, leading to cellular 

resistance to cytotoxic chemotherapies and ionizing radiation. In contrast, mitochondria from 

these tissues in young mice and humans are primed for apoptosis, predisposing them to 

undergo cell death in response to genotoxic damage. While expression of the apoptotic protein 

machinery is nearly absent by adulthood, in young tissues its expression is driven by c-Myc, 

linking developmental growth to cell death. These differences may explain why pediatric cancer 

patients have a higher risk of developing treatment-associated toxicities. 

 

SIGNIFICANCE 

 

Pediatric cancer patients treated with ionizing radiation or cytotoxic chemotherapy have a high 

risk of developing devastating toxicities including cognitive decline and chronic heart failure, 

limiting the use of potentially curative therapies. These treatments, which rely on the preferential 

induction of an apoptotic cell death in cancer cells over healthy tissues, are comparatively well 

tolerated in adults, yet the molecular basis for this difference in sensitivity is unknown. Herein, 

we make the discovery that apoptosis is dynamically regulated during postnatal development in 

healthy tissues, altering cell fate in response to genotoxic damage induced by anti-cancer 

therapies. Importantly, we use mouse models to show that these pathways may be modulated 

to potentially prevent treatment-associated toxicities. 
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INTRODUCTION 
 

The intrinsic, or mitochondrial, pathway of apoptosis is an evolutionarily-conserved and 

highly regulated form of cell death that is critical for development and homeostasis of 

multicellular organisms. The deregulation of apoptosis is associated with many pathologies 

including cancer (Hanahan and Weinberg, 2000). Apoptosis is triggered when a pro-apoptotic 

effector protein (BAX or BAK) is activated by an activator BH3-only protein, of which BIM and 

BID are most potent (Tait and Green, 2013). This results in the oligomerization of BAX or BAK, 

causing mitochondrial outer membrane permeabilization (MOMP) and consequent release of 

cytochrome c into the cytosol, where it complexes with APAF-1 to form the apoptosome. This 

complex activates downstream cysteine proteases, including caspase 3, that dismantle the cell 

and promote phagocytosis (Galluzzi et al., 2009; Taylor et al., 2008). However, anti-apoptotic 

proteins in this family (BCL-2, BCL-XL, MCL-1, etc.) can block apoptosis by binding and 

sequestering monomeric BAX/BAK or BH3-only proteins (Czabotar et al., 2013). In order for 

apoptosis to occur, anti-apoptotic proteins within the cell must be overwhelmed and BAX and/or 

BAK activated.  

The mitochondrial apoptosis pathway can be activated by a wide variety of cellular 

stressors including growth factor or nutrient deprivation as well as genotoxic damage from 

cytotoxic chemotherapies and radiation. In each of these cases, the basal state of the 

mitochondrial apoptotic pathway can alter the eventual fate of the cell (Sarosiek and Letai, 

2016). To directly measure the functional state of the mitochondrial apoptotic pathway in cells, 

we developed the BH3 Profiling assay, which measures apoptotic priming (proximity of cellular 

mitochondria to the apoptotic threshold) by delivering titrated doses of distinct pro-apoptotic 

signals (BH3 peptides) to mitochondria while monitoring MOMP (Ryan and Letai, 2013). In this 
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assay, mitochondria bearing only a small reserve of unbound anti-apoptotic proteins undergo 

MOMP in response to even relatively low doses of pro-apoptotic peptides and are thus 

classified as “primed” for apoptosis; primed cells readily die when pro-death signals are 

generated in response to cellular damage or stress (Ni Chonghaile et al., 2011). In contrast, 

cells that contain a large reserve of unbound anti-apoptotic proteins are less sensitive to BH3 

peptides and are classified as “unprimed;” unprimed cells must experience higher levels of 

damage or stress to trigger MOMP. Finally, cells that block apoptosis by not expressing 

sufficient levels of critical components of the cell death machinery (such as BAX and BAK) are 

classified as “apoptosis refractory.” We have previously shown that patients with primed cancers 

respond more favorably to chemotherapy than patients with unprimed cancers (Davids et al., 

2012; Ni Chonghaile et al., 2011; Vo et al., 2012).  

Chemotherapy and radiation treatments have cured cancer in millions of patients 

(American Cancer Society, 2014), yet the apoptotic cell death that these agents can induce in 

healthy tissues limits their use. This is especially true in pediatric patients who experience 

considerably higher levels of treatment-associated toxicity and morbidity from genotoxic agents. 

For example, brain irradiation is a critical component of the potentially curative treatment for 

brain tumors. However, radiation can also trigger cell death in healthy neurons in very young 

patients, resulting in permanent and devastating cognitive deficits with severity being inversely 

correlated with age (Merchant et al., 2010; Silber et al., 1992). Similarly, children with many 

types of cancers are commonly treated with anthracyclines including doxorubicin. However, 

doxorubicin treatment in children can cause thinning of the cardiac ventricular walls, a reduction 

in ventricular mass and consequent heart failure, with the youngest children again being most at 

risk (Lipshultz et al., 1995; Trachtenberg et al., 2011). Currently, parents and clinicians must 

balance the curative potential of these treatments with their potential for causing devastating 
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toxicities. It is unclear why young children are more at risk of developing these toxicities than 

adults.  

Much of the study of apoptosis has been devoted to cancer and hematopoietic tissues, 

with relatively little study of other healthy somatic tissues. It is currently unknown whether cells 

that make up distinct tissues have varying levels of apoptotic priming, which could potentially 

contribute to their different sensitivities to classical apoptosis-inducing agents.  

 

RESULTS 

 

Many adult tissues are apoptosis refractory  

 

 We first performed BH3 Profiling on a comprehensive set of adult mouse tissues to 

detect any potential differences in their apoptotic priming. Cells of the hematopoietic lineage 

from the periphery (peripheral blood mononuclear cells [PBMCs]), thymus, spleen and bone 

marrow are the most primed cells in the body among those we studied, as indicated by high 

mitochondrial depolarization in response to BIM or BID BH3 peptides or full length proteins 

(Figures 1A-B and S1A). Cells (excluding blood) constituting the large intestine, small intestine, 

lungs and liver were relatively unprimed, as they required higher doses of BIM or BID BH3 

peptides and a longer time period to trigger depolarization. Strikingly, we found adult brain, 

heart and kidney tissues are far less primed, and nearly completely insensitive to concentrations 

of BIM and BID BH3 (100 µM) that are sufficient to induce MOMP in nearly every cancer cell 

line or primary cancer cell we have tested.  

 We previously found that apoptotic priming is a strong determinant of cancer cell fate in 

response to cytotoxic chemotherapies. We hypothesized that healthy tissue sensitivity to 
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genotoxic agents would be dependent on their degree of priming. To test this hypothesis, we 

exposed live adult mice to 8 Gray of gamma radiation and found that the degree of apoptosis 

induced in the tissues corresponded to their level of apoptotic priming (Figure 1C-D, S1B-C). 

We next asked whether the profound differences in mitochondrial priming in adult tissues 

could be due to differences in expression of BCL-2 family proteins. While we might have 

expected to find reduced expression of pro-apoptotic proteins or increased expression of their 

anti-apoptotic counterparts, we instead found that both pro- and anti-apoptotic proteins were 

lacking in apoptosis refractory tissues (Figure 1E). BAX and BAK, two proteins that are required 

for mitochondrial apoptosis, were nearly undetectable in refractory tissues. These tissues also 

expressed lower levels of Caspases 3 and 8 to potentially further suppress cell death. We did 

not observe major differences in the expression of XIAP, a potent inhibitor of caspase activity, 

across adult tissues.  

We next examined the levels of these proteins in human tissues by mining mass-

spectrometry-based proteome data (Kim et al., 2014) and found that adult human tissues exhibit 

a similar pattern of protein expression to that of mice (Figure 1F, Tables S1 and S2), suggesting 

that mouse and human tissues regulate apoptosis similarly, which is consistent with previous 

work (Reed et al., 2003). 

 To test whether the lack of BAX and BAK in apoptosis refractory tissues was preventing 

activator-induced MOMP, we tested whether addition of recombinant BAX to mitochondria 

would restore sensitivity to BH3 peptides. While recombinant BAX alone did not induce MOMP, 

we detected efficient and complete MOMP in adult brain, heart and kidney tissues when 

administering BAX concurrently with even minute amounts of BIM (Figure 1G). These data 

indicate that neither BAX nor BAK are expressed at levels sufficient for MOMP in adult brain, 

heart and kidney tissues. Moreover, in these tissues there is lower expression of nearly all 
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proteins comprising the mitochondrial apoptotic machinery, both pro- and anti-apoptotic, and 

pre- and post-mitochondrial. This apoptotic resistance presumably protects vital, long-lived cells 

constituting these largely post-mitotic tissues from aberrant cell death. Operationally, we defined 

cells as apoptosis refractory when MOMP is not induced by BIM or BID BH3 at even 100 µM, 

yet efficiently induced by low doses (1 µM) of BIM BH3 in the presence of exogenous BAX. It is 

important to note that although cells may be designated as apoptosis refractory based on the 

BH3 Profiling assay, this designation is made at a single time point and in the absence of stress. 

There may exist conditions under which apoptosis refractory cells upregulate critical pro-

apoptotic proteins to acquire apoptotic sensitivity.  

 

Early in life, tissues are primed for apoptosis 

 

Young children frequently experience neuro- and cardiotoxicity when treated with 

radiation or genotoxic chemotherapies. We therefore hypothesized that the apoptotic pathway 

may be more active in these tissues in young mammals as compared to adults. To test this, we 

measured levels of apoptotic priming in newborn mice and found that brain, heart and kidney 

mitochondria in embryonic and very young mice are extremely primed for apoptosis (Figure 2A). 

In fact, mitochondria in neonatal brain cells were almost as primed for apoptosis as adult 

splenocytes. We next sought to delineate the transition between being highly primed and 

apoptosis refractory in relevant tissues by making serial measurements over time. Each tissue 

exhibited a distinct temporal program to transition from being primed to being apoptosis 

refractory with the sharpest decreases occurring shortly after birth (P0-P5) (Figure 2B). In 

contrast, the spleen maintained a high level of priming throughout development and into 

adulthood (Figure 2B).  
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We next sought to test the functional consequences of these developmental changes in 

apoptotic priming. We chose to again stress cells with gamma radiation, which applies an equal 

and reproducible level of genotoxic damage across tissues and models radiation therapy in 

pediatric cancer patients. Mice at various stages of postnatal development were treated with 

whole-body gamma irradiation and apoptosis was quantified. We detected extensive caspase 

3/7 activation post radiation, at doses of 0.50 - 8 Gy, in brain, heart and kidney tissues in P0-P2 

mice, which was measurably reduced each day of postnatal development and finally silenced 

(insensitivity to 8 Gy) by P13, P15 and P12 in brain, heart and kidney, respectively (Figure 2C 

and S2A). Splenocytes, which are primed throughout life, consistently activated caspases in 

response to damage. We utilized immunohistochemical (IHC) staining for cleaved caspase 3 

and TUNEL to confirm that the cells undergoing apoptosis in each tissue in response to 

radiation are not blood cells (Figure 2D-F and S2B-F). 

Very young patients suffer increased iatrogenic cardiotoxicity from anthracyclines 

compared with non-elderly adults. To determine whether the dynamic levels of apoptotic priming 

during postnatal development may contribute to this difference, we injected mice at various 

postnatal stages with the anthracycline doxorubicin and measured caspase activation in the 

heart, again modeling pediatric cancer treatment in humans. In neonatal heart tissue, we 

detected caspase activation, which decreases with age in a manner similar to that following 

radiation damage (Figure 2C).  

Finally, we sought to determine whether the changes in apoptotic priming were 

dependent on an in vivo milieu or whether they could be driven by cell-autonomous 

mechanisms. To test this, we isolated hippocampal neurons from embryonic day 19 (E19) rat 

brains and measured apoptotic priming and chemosensitivity of these cells at regular intervals 

as they matured in vitro (Figure 3A-C). These non-proliferating (Figure 3D) neurons underwent 
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the same developmentally-defined transition from high apoptotic priming to apoptotic resistance 

that was evident in vivo. Their sensitivity to the classical apoptosis inducers staurosporine and 

doxorubicin followed a similar pattern (Figure 3E).  

 

Age-related apoptotic priming is regulated via BAX and BAK 

 

The contrast in apoptotic priming in vital tissues between young and adult mice 

prompted us to explore the age-related expression of BCL-2 family proteins. Because we had 

previously shown that exogenous BAX supplementation is sufficient to reverse mitochondrial 

resistance to pro-apoptotic signals, we focused on the developmental regulation of BAX and 

BAK. In the spleen, we found the critical effectors BAX and BAK and potent activator BH3-only 

proteins BIM and BID to be consistently expressed during the entire lifespan of the animals 

(Figure 4A). Major anti-apoptotic proteins were also expressed in the spleen consistently 

throughout life, although a downregulation of BCL-XL and MCL-1 and upregulation of BCL-2 

with age was noted. Expression of caspase 3 and APAF-1 was unchanged over time. These 

results were consistent with BH3 profiling data showing high levels of priming throughout life. 

In contrast to the spleen, we found the expression of BCL-2 family members in the 

mouse brain during postnatal development to be dynamic. BAX was highly expressed in the 

mouse brain at P0-P5, but continually reduced into adulthood (Figure 4A). BAK was reduced in 

a similar manner yet expression levels were lower overall (relative to adult spleen). BCL-XL, as 

well as caspases 8 and 9 were consistently expressed while BIM, BID, MCL-1 and BCL-2 were 

also reduced during postnatal brain development. Finally, both caspase 3 and APAF-1 were 

strongly downregulated during postnatal development, further contributing to the suppression of 

apoptosis in adult brain tissue.  
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Similar results to the brain were also observed in heart, kidney and liver with BAX and 

BAK being rapidly downregulated following birth (Figure 4A). We confirmed this downregulation 

occurs in the non-blood cells that comprise these tissues via IHC (Figure S3). We also found 

that adult liver tissue expresses low, yet detectable, levels of BAK (Figure S3B), which is 

consistent with the higher sensitivity of adult hepatocytes to BID over BIM (Figure 1B) due to 

their activation preferences (Sarosiek et al., 2013). It is notable that anti-apoptotic proteins 

tended to be downregulated in these tissues as well, further demonstrating that adult tissues are 

not protected from apoptosis by high expression of anti-apoptotic proteins. Instead, there 

appears to be a wholesale dismantling of the apoptotic machinery to render these cells 

apoptosis refractory, preserving their survival. The expression levels of VDAC, which can 

facilitate cytochrome c release from mitochondria during MOMP, and IAP proteins (XIAP, 

CIAP1) also remained largely unchanged across all tissues. 

We also found BAX and BAK, along with other key components of the apoptotic 

machinery, to be strongly downregulated in human adult brain, heart and liver tissues relative to 

fetal tissues (Figure 4B and Tables S1-S2).  

 

Healthy tissues differ in utilizing BAX versus BAK to undergo apoptosis  

  

 BAX and BAK have non-overlapping roles in regulating apoptosis and their activity can 

be modulated selectively (Sarosiek et al., 2013; Shamas-Din et al., 2014). Our results showed 

that BAX and BAK are downregulated in tissue-specific manners as they transition from being 

apoptotically primed to refractory. We therefore utilized mouse models to determine the distinct 

contributions of BAX and BAK to the activation of apoptosis in healthy tissues. Neonatal brain 

tissue in WT mice was efficiently depolarized by the BIM (~80%) and, to a lesser extent, BID 
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(40%) peptides (Figures 5A-B and S4). In Bax-/- neonates, however, we found the responses to 

BIM and BID significantly reduced, which was not evident in Bak1-/- mice. We therefore 

hypothesized that loss of Bax would protect brain tissue from radiation-induced apoptosis while 

loss of Bak1 would not. In agreement with the BH3 Profiling data, we found that loss of Bax 

prevented nearly all caspase 3 activation post radiation while loss of Bak1 had no effect (Figure 

5C). Thus, in the early postnatal brain, BAX and not BAK is the dominant effector that is 

engaged to trigger apoptosis.  

 We then found that each tissue exhibits its own pattern of effector dependence. 

Splenocytes can execute apoptosis via BAX or BAK and although loss of BAX is somewhat 

protective, both must be lost in order to prevent all radiation-induced apoptosis (Figure 5C). In 

the neonatal heart, loss of either BAX or BAK reduced responses to peptides and radiation, 

indicating that both effectors are present, yet at limited levels, consistent with our 

immunoblotting results (Figure 4A). Cells within the neonatal kidney also contain both BAX and 

BAK, and loss of either reduced peptide responses. However, loss of BAX meaningfully reduced 

caspase activation after irradiation while loss of BAK did not. Finally, we found that neonatal 

hepatocytes contained both BAX and BAK and required the loss of both in order to significantly 

reduce apoptosis post radiation. In all cases, the knockout of Bax preferentially dulled 

responses to the BIM BH3 peptide while loss of Bak1 preferentially dulled responses to the BID 

BH3 peptide, which is in agreement with reported specificity of activator/effector interactions 

(Sarosiek et al., 2013). These results may enable the prevention of damage-induced apoptosis 

in neonatal tissues by inhibiting BAX alone (brain) or both BAX and BAK (heart, kidney, liver, 

spleen). 
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Higher apoptotic priming in young mice contributes to doxorubicin-induced 

cardiotoxicity  

 

 Young hearts are considerably more sensitive to doxorubicin than non-elderly adult 

hearts. Clinically, the degree of cardiotoxicity observed correlates with age, with the youngest 

children being most at risk for developing symptoms including decreased ejection fraction (EF), 

thinning of ventricular walls, and an overall reduction in heart size (ventricular mass), sometimes 

referred to as “Grinch syndrome” (Lipshultz et al., 2014). We hypothesized that the differences 

in apoptotic priming in cardiomyocytes from young versus adult hearts may contribute to the 

heightened risk of developing cardiotoxicity in young patients.  

We developed a mouse model of doxorubicin-induced cardiotoxicity by injecting mice 

with 3 doses of doxorubicin (5 mg/kg) over the course of one week, starting at days P5/6 

(primed for apoptosis), P11/12 (unprimed), or P60-80 (apoptosis refractory) (Figure 6A). Our 

dosing schedule is reduced in intensity (3 doses instead of 5) from one previously used to 

model chronic doxorubicin cardiotoxicity in adult mice (Zhang et al., 2012), which, when tested 

in young mice induced prohibitively high levels of cardiotoxicity as evidenced by arrhythmias 

and death (data not shown). Using echocardiograms at day 14, we found significant thinning of 

the interventricular septal (IVS;d) and posterior ventricular walls (LVPW;d) in M-mode 

echocardiogram tracings at diastole in animals that began receiving injections at P5/6, but not 

those that began as adults (Figure 6B-D, Movies S1-S2). Moreover, animals treated at a young 

age exhibited a profound decrease in EF and left ventricular mass while adults did not. 

Masson’s Trichrome staining (MTS) of hearts after treatment showed focal areas of altered 

myocyte architecture with signs of early injury (loss of cross striations, disorganization of 
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myofilaments resulting in abnormal staining, and hypochromatic nuclei) in mice treated starting 

at P5/6 but not adults (Figure S5A).  

We next asked if suppression of the intrinsic apoptotic pathway could reverse these 

effects of doxorubicin. Using knockout mice to model pharmacologic inhibition, we found that 

loss of both Bax and Bak1 was required to consistently reverse doxorubicin-induced damage in 

neonatal mouse hearts (Figure 6E). In addition, knockout of Bax and Bak1 in P5/6 mice treated 

with doxorubicin showed dramatically reduced, although not completely lost, evidence of early 

injury in MTS histology (Figure S5B). Therefore, young heart tissue expresses both BAX and 

BAK at sufficient levels to activate apoptosis and thus inhibition of both of these effectors is 

needed to mitigate doxorubicin-induced thinning of ventricular walls and reduction in ventricular 

mass. In addition, there may also be a non-apoptotic component of doxorubicin-induced 

cardiotoxicity since the BAX/BAK double knockout mice still exhibited some signs of early injury 

based on MTS histology, although symptoms were greatly reduced. Taken together, our results 

show that hearts in young mice exhibit more severe clinically-relevant symptoms of doxorubicin 

cardiotoxicity than adults, potentially due to the increased BAX and BAK expression in 

apoptotically primed young hearts (Figure 2B) that renders them hypersensitive to doxorubicin 

(Figure 2C). 

 

Apoptotic priming is modulated by c-Myc  

 

The concerted loss of several genes responsible for regulating apoptosis suggested that 

a master developmental program or transcription factor may be regulating multiple members of 

this pathway. One such potential modulator is c-Myc (hereafter Myc), a transcription factor that 

drives cellular growth and proliferation in normal as well as cancerous cells (Dang et al., 2006). 
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Several links between Myc and apoptosis have been reported, including the sensitization of Myc 

over-expressing cells to a variety of pro-apoptotic stimuli (Bissonnette et al., 1992; Egle et al., 

2004; Evan et al., 1992; Murphy et al., 2008) and its direct regulation of BAX expression 

(Mitchell et al., 2000). We thus hypothesized that tissues early in development express Myc at 

levels that are sufficient to drive the expression of BAX and potentially other apoptosis-related 

genes, making them primed for apoptosis, and that loss of BAX expression in adulthood is 

related to loss of Myc.  

Consistent with our hypothesis, we found that Myc is expressed at higher levels in young 

brain, heart and kidney tissues as compared to adult (Figure 4A). The human proteome 

database did not contain sufficient data for Myc expression. If Myc was driving expression of 

pro-apoptotic genes, we would expect Myc-expressing cells to be more primed. To test, we 

utilized flow cytometry-based BH3 Profiling, which allows for single-cell measurements of 

priming concurrently with evaluation of extracellular or intracellular factors. We measured 

priming and nuclear Myc expression (indicative of activation) in cells from P0 tissues and found 

that Myc-positive brain, kidney and liver cells were, as expected, more primed than Myc 

negative cells (Figure 7A). We did not detect any Myc-positive cells within the respective adult 

tissues, which we again found to be dramatically less primed than neonatal tissues. In heart 

tissues, the extended processing necessary for this analysis resulted in prohibitively high levels 

of cytochrome c loss in even untreated cells, thus preventing analysis in that tissue.  

Expression of Myc was associated with higher apoptotic priming, but this relationship 

may not be causal, prompting us to test whether Myc expression was necessary to maintain 

high priming in neonatal tissues. We therefore measured priming in the cerebral cortex of either 

WT or Myc+/- mice (Hofmann et al., 2015). As expected, the loss of one allele of Myc resulted in 

reduced sensitivity to BIM as compared to WT littermates (Figure 7B).  
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Next, we sought to determine whether activating Myc in adult tissues would be sufficient 

to reactivate apoptosis in refractory cells. We first utilized the well-characterized 

Gt(ROSA)26Sortm1.1(MYC/ERT2)GEV (hereafter MycER) mouse model that was developed to study 

the physiological effects of acute Myc activation in adult tissues (Murphy et al., 2008). These 

mice express a cDNA encoding human c-Myc fused at its C terminus to the hormone-binding 

domain of 4-hydroxytamoxifen (4-OHT)-responsive mutant murine estrogen receptor, enabling 

us to activate Myc systemically with injections of tamoxifen. Activation of Myc in normally 

apoptosis refractory brain and kidney tissue, or unprimed liver tissue increased sensitivity to 

genotoxic damage (Figure 7C). Notably, we found that Myc-positive cells within these tissues 

were more primed for apoptosis than their Myc-negative counterparts as measured via flow 

cytometry-based BH3 Profiling (Figure 7D). Our data suggests that Myc activation may re-

enable the apoptotic pathway in apoptosis refractory tissues.  

 After acute liver damage, hepatocytes are able to re-enter the cell cycle and proliferate 

in order to replace dead cells (Tzung et al., 1997). Based on our previous data, we 

hypothesized that hepatocytes from adult liver tissue that are actively expressing Myc and 

proliferating would become more primed for apoptosis. We tested this by inducing immune-

mediated liver damage via injection of Concanavalin A (ConA), which triggers active liver 

regeneration and hepatocyte proliferation (Trautwein et al., 1998). After injection with ConA, we 

observed a profound increase in Myc-positive cells within the liver (~0% Myc-positive in 

untreated animals) (Figure 7E), as hepatocytes proliferated to replace dead cells. We directly 

compared the level of priming in Myc-positive versus Myc-negative hepatocytes and found the 

former to be significantly more sensitive to BIM and BID BH3 peptides (Figure 7F). Thus, using 

both genetic and physiologic models, we found that activation of Myc increases mitochondrial 

priming. 
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 Because modulation of Myc was sufficient to alter priming in the expected manner, we 

next sought to test whether Myc directly drives the expression of apoptosis-regulating genes in 

neonatal tissues. Myc activates the transcription of its target genes by binding specific E-box 

(Enhancer box) elements in gene promoters (Mitchell et al., 2000). We therefore used chromatin 

immunoprecipitation followed by quantitative polymerase chain reaction (ChIP-qPCR) to test for 

Myc occupancy in the E-boxes present in the promoters of various BCL-2 family member genes. 

In agreement with our hypothesis that Myc may be modulating BAX expression in neonatal 

tissues, we detected the Bax promoter being bound by Myc in neonatal brain, kidney, liver and 

spleen tissues (Figure 7G). Furthermore, Myc binding to the Bax promoter was lost in the adult 

brain and kidney but not the spleen, consistent with the spleen maintaining a high level of 

priming throughout life (note that adult heart and liver tissues were not tested). We also 

detected E-boxes in the promoters of pro-apoptotic Bcl2l11 (Bim), which is consistent with 

previous reports (Campone et al., 2011; Muthalagu et al., 2014), and Bid, and confirmed that 

Myc bound to these promoters. Taken together, these data indicate that Myc drives an 

apoptotically primed state by directly activating transcription of pro-apoptotic genes Bax, Bim, 

and Bid.  

 

Human brain regulates apoptosis during development similarly to mouse 

 

 The dynamic regulation of apoptosis in murine tissues dramatically affected responses 

to genotoxic damage and prompted us to ask whether the same temporal regulation could be 

directly observed in human tissues. One source of non-malignant, viable human brain tissue is 

from pediatric and adult patients that undergo removal of seizure foci to control otherwise 

intractable seizures caused by epilepsy, trauma or other pathology. Seizure foci are mapped in 
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the human brain and resected, inevitably along with some ostensibly healthy brain tissue 

(Bittigau et al., 2003). We obtained fresh, healthy brain tissue from over 20 such patients from 4 

months to 21 years of age for BH3 Profiling analysis (Table S3). As with mice, we found human 

brain tissue from young patients to be significantly more sensitive to BIM and BID BH3 peptides 

than those from adults (Figure 7H-I). There existed a consistent downregulation of apoptotic 

priming during postnatal human brain development, predisposing the youngest children to 

radiation- and chemotherapy-induced neurotoxicity. In our study, there was a period of higher 

heterogeneity in apoptotic priming among patients between 2 and 6 years old, after which, the 

brain transitions to full apoptotic resistance. Finally, we mined mRNA expression data in the 

human brain during prenatal and postnatal development (Miller et al., 2014) and found that BAX 

expression is dramatically reduced during development, starting even prenatally (Figure 7I), 

which we confirmed at the protein level in our samples (Figure 7J). The highest mRNA 

expression of BAX was found in fetal brain, suggesting that the highest levels of apoptotic 

priming, perhaps similar to those observed in the youngest (P0-P2) mice, would be found in 

fetuses and pre-term infants.  

 

DISCUSSION 

 

The study of apoptosis has been traditionally dominated by the study of cancer cells and 

lymphocytes, the ubiquitous presence of functioning machinery of the mitochondrial apoptotic 

pathway in which has led to a general acceptance that this pathway is present in all cells. We 

were surprised to find that heart, kidney, and brain in adult mice lacked the proteins that 

regulate the mitochondrial apoptotic pathway. It appears that the mitochondrial apoptotic 

machinery is largely absent in these adult tissues, which we designate as being “apoptosis 

18 

 

 



Sarosiek, et al. 

refractory.” This apoptosis refractory state is achieved as part of a regulated postnatal 

developmental program in both mice and humans and is apparently reversible, as stress can 

restore apoptotic sensitivity to cells previously apoptosis refractory. A common feature of 

embryonic, immediately postnatal, and regenerating tissues is a greater degree of proliferation. 

We believe that in all of these tissues, enhanced priming is the price that cells pay for the 

capacity to proliferate. Cancer cells often share many features of embryonal cells, including lack 

of differentiation, enhanced proliferation, and stem-like function (Daley, 2009). The relatively 

primed nature of cancer cells may be thought of as re-establishment of yet another embryonic 

program in cancer cells.  

Previous studies have shown that ectopically expressed Myc can foster pro-apoptotic 

signaling (Bissonnette et al., 1992; Evan et al., 1992; Murphy et al., 2008). We demonstrate 

here that endogenous, physiological Myc regulates apoptosis sensitivity across a range of 

tissues during mammalian development. Myc therefore provides one important mechanistic link 

between developmental proliferation, expression of pro-apoptotic genes, and apoptotic priming. 

However, we suspect that there are additional modulators of properties of this significance. In 

addition, our findings raise the question of whether other programmed cell death pathways 

including extrinsic (cell death receptor mediated) apoptosis, necroptosis (Zhou and Yuan, 2014), 

and ferroptosis (Dixon et al., 2012) are also dynamically regulated during postnatal 

development.  

Very young pediatric cancer patients are subject to severe side effects of radiation and 

chemotherapy from which older children and adults are relatively spared. We show that the 

apoptotic responses of heart and brain tissues depend on the developmentally regulated 

priming of the mitochondria. It is possible that this regulation is a major contributor to the 

hypersensitivity of very young tissues to genotoxic agents. We find this correlation holds in the 
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brains of very young humans. Moreover, we find we can reverse this phenotype by un-priming 

mitochondria of young tissues by genetic means, potentially modeling pharmacologic inhibition.  

Earlier work in this field reported the seemingly contrasting findings that individual BCL-2 

family members were modulated with time in select tissues(Kole et al., 2013; Polster et al., 

2003a) (Kole et al., 2013; Polster et al., 2003; Shi et al., 2012; Soane et al., 2008) and that BAX 

and BAK were highly and broadly expressed in somatic tissues including the brain 

(Brustovetsky et al., 2003; Krajewski et al., 1994). Our work aims to clarify how apoptosis is 

regulated in healthy tissues and also highlight the challenges in inferring phenotypic changes 

due to changes in levels of individual BCL-2 family proteins. The large number of proteins within 

this family and their nuanced pro- and anti-apoptotic effects, which can be further modulated by 

post-translational modifications, requires the use of a functional test of apoptotic priming to 

measure the net integration of these signals.  

It is important to note that BH3 Profiling does not assess the state of post-MOMP 

regulators of apoptosis such as IAP proteins or caspases, which are also known to affect cell 

fate (Holly et al., 1999; Martin, 2002). In addition, the abilities of cells to die via the extrinsic 

apoptotic pathway (Fulda and Debatin, 2006) or inflammation-associated pathways (Martin et 

al., 2012) in response to genotoxic damage are not directly probed by BH3 Profiling. Finally, we 

acknowledge that even in a primed cell, whether apoptotic machinery is actually engaged 

following genotoxic damage depends on factors such as DNA damage responses and p53 

competence (Kandioler-Eckersberger et al., 2000; Loewer et al., 2010; Rich et al., 2000). 

Combining BH3 Profiling with tests of the expression or adequacy/activity of these other 

factors/pathways, as we have attempted to do to some extent here, would provide the most 

complete understanding of the pretreatment state of the cell or tissue and how that impacts cell 

fate in response to damage or stress.  
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While our results show that many healthy tissues are apoptosis refractory in the adult, 

we do not mean to rule out the possibility that various chronic injuries or disease states might 

restore apoptotic sensitivity in these tissues. In fact, increased levels of neuronal BAX and/or 

BAK have been reported in patients with Alzheimer’s disease (MacGibbon et al., 1997; 

Shimohama, 2000), which would be expected to contribute to the neuronal death that 

characterizes this pathology. BAX expression has also been observed to increase in different 

liver pathologies, including hepatitis and cirrhosis (Jr et al., 2000; Liang et al., 2007) and is 

increased following Mcl1 deletion in mouse cardiomyocytes, potentially contributing to the 

apoptosis reported in that model (Wang et al., 2013). Indeed, we found that chemical liver injury 

and the resulting regenerative proliferation increased apoptotic priming in adult mice. Such 

findings suggest that the program we observe is reversible, as we observed with the increased 

priming post activation of Myc in the regenerating liver or MycER mouse model. More study is 

needed to understand how disease states may impact apoptotic priming.  

Our analysis shows that virtually all cells within neonatal brain, heart and kidney are 

primed for apoptosis while in adults virtually all cells within these tissues are apoptosis 

refractory. We did not measure priming levels or changes in priming among different types of 

cells within each tissue. It remains possible, however, that apoptotic priming of cell subsets are 

differentially regulated in development. Future work will focus on mapping how individual cell 

types within organs regulate apoptosis. 

Our findings suggest that there may potentially be ways to improve the therapeutic index 

of cancer treatments through the use of agents that selectively modulate BCL-2 family member 

function. For example, because of the developing brain’s dependence on BAX and not BAK for 

apoptosis, clinicians could utilize a BAX inhibitor or RNAi-based knockdown of BAX while 

administering brain irradiation for the treatment or prophylaxis of acute lymphocytic leukemia 
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(ALL) with CNS involvement. This strategy would potentially prevent apoptosis in neurons, 

which express only BAX, while still allow ALL cells, which express both BAX and BAK 

(Haferlach et al., 2010), to undergo apoptosis via BAK. It may also be possible to modulate 

developmental programs or Myc levels via recently developed strategies (Delmore et al., 2011) 

to induce transient apoptotic resistance in healthy tissues prior to administering radiation or 

chemotherapy. Beyond cancer, our data have implications for medical conditions such as head 

trauma in pediatric patients, which induces neuronal death via apoptotic and excitotoxic 

pathways, while in adults only the excitotoxic pathway is engaged (Pohl et al., 1999). A BAX (or 

BAX/BAK) inhibitor could prevent the apoptotic component of this neuronal death, potentially 

rescuing some of the ill effects of these injuries in young children. Although no inhibitors of BAX 

and/or BAK have reached the clinic, efforts are currently underway to develop such agents 

(Hetz et al., 2005; Lessene, 2015).  

Our findings may also impact the development of anti-cancer agents targeting cell death. 

Efforts to develop small molecule direct activators of BAX for cancer therapy have begun 

(Gavathiotis et al., 2012). The BIM BH3 peptide is itself a BAX activator. Our finding that the 

mitochondria of most adult somatic tissues are relatively insensitive to BIM BH3 makes the 

direct activation of BAX for cancer therapy more attractive. However, based on our findings 

these same tissues in pediatric patients could prove to be exquisitely sensitive, and thus efforts 

to utilize such agents in very young children should be accompanied by consideration of the 

apoptotic sensitivity of their normal tissues.  
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EXPERIMENTAL PROCEDURES 

 

Animals: Mice were housed and bred in accordance with the policies and regulations set forth by the 

Dana-Farber Cancer Institute’s Institutional Animal Care and Use Committee (IACUC). All animal 

experiments were approved by IACUC under DFCI protocols 11-008, 12-049 and UK Home Office 

licenses 70-7950 and 70-8645.  

 

Human brain specimens: All specimens were collected under IRB-approved tissue collection 

protocol #09-02-0043 at Boston Children’s Hospital and transferred to DFCI via Office for 

Human Research Studies exemption 13-545. Patients underwent surgery for removal of seizure 

foci at Boston Children’s Hospital (Table S3) and resected tissues were first delivered to a 

neuropathologist for evaluation. If available, a de-identified sample (0.2-0.5g) of brain tissue was 

provided to study investigators in PBS on ice and was immediately processed for BH3 Profiling. 

Part of the sample (0.1g) was excluded for cryopreservation and was subsequently prepared for 

immunoblotting as outlined above. The remaining brain tissue was dissociated by repeated 

pipetting until a single cell suspension was achieved and BH3 Profiled with JC1. 

 

Fluorescence-based BH3 Profiling: Briefly, BH3 peptides or recombinant proteins in T-EB buffer 

were deposited into each well in a black 384-well plate, 1 treatment per well, in triplicate for 

each independent experiment. Single cells isolated from indicated tissues were resuspended in 

T-EB buffer and mixed 1:1 with a dye solution containing digitonin and JC-1 in T-EB. Cells were 

kept at room temperature for 5 min to allow for cell permeabilization and dye equilibration. Cells 

were then added to each treatment well in the 384-well plate and fluorescence at 590 nm was 

measured every 5 min at 32°C for a total of 120 min. Relative mitochondrial depolarization was 
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defined as the magnitude of mitochondrial potential loss resulting from BH3 peptide treatments 

as compared to negative control DMSO and positive control FCCP.  

 

Flow cytometry-based BH3 Profiling: Briefly, BH3 peptides in T-EB buffer with digitonin were 

deposited into each well in a 384-well plate. Single cells were resuspended in T-EB buffer and 

added to each treatment well and incubated for 60 min at 28°C. Peptide exposure was 

terminated with formaldehyde and cells were stained overnight with an antibody to cytochrome c 

conjugated to AF647. Cytochrome c positivity was measured on a BD Biosciences LSR II flow 

cytometer. 

 

Additional experimental procedures can be found in the Extended Experimental Procedures.  
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FIGURE LEGENDS 

 

Figure 1: Adult brain, heart, and kidney tissues are apoptosis refractory, protected from 

genotoxic damage. (A) Tissues were isolated from adult mice (>P60) and BH3 Profiled. 

Mitochondrial potential under each treatment condition was measured every 5 min during the 

experimental time course and plotted relative to maximum value of negative control (DMSO). 

Percent depolarization (indicative of MOMP) is calculated for each BH3 peptide treatment 

relative to DMSO (0%) and FCCP (100%). Representative traces are shown (mean ± SD, ≥3 

independent experiments [IEs]). (B) Summary BH3 Profiling data across healthy adult mouse 

tissues. ≥ 3 IEs. (C) After whole body gamma irradiation, apoptosis was measured via a 

caspase 3 activity assay. Data were compiled from 5 animals for each treatment across 3 IEs 

with bars representing means. (D) After whole body irradiation, apoptosis was detected via 

immunohistochemistry for cleaved caspase 3. Data were compiled from 2 animals for each 

treatment across 2 IEs with bars representing means. (E) Tissues were collected from adult 

mice and immunoblotting was performed. Densitometry was performed across immunoblots 

from 3 IEs and averaged (blue heatmap on right). GAPDH is loading control. Relative molecular 

weight markers are shown on left. (F) Expression of indicated proteins in adult human tissues 

was assessed via the Kim et al. (2014) mass spectrometry dataset. (G) Tissues were isolated 

from adult mice and BH3 Profiled in the presence of recombinant BAX. Representative traces 

are shown (mean ± SD, ≥3 IEs). See Figure S1 and Tables S1-S2 

 

Figure 2: Embryonic and early postnatal brain, heart, kidney and liver tissues are primed 

for apoptosis and sensitive to genotoxic damage. (A) Tissues were isolated from postnatal 

day 0 mice (P0) and BH3 Profiled. Representative traces are shown (mean ± SD, ≥3 IEs). (B) 
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Summary BH3 Profiling data across tissues during embryonic and postnatal development. Each 

point represents an average of 3 measurements in each mouse tissue across at least 5 IEs. (C) 

After whole body irradiation or doxorubicin injection, tissues were collected and caspase activity 

was measured via an enzymatic assay. Each point represents an average of 3 measurements 

in each mouse tissue across at least 5 IEs. (D) After whole body irradiation, apoptosis was 

detected via IHC for cleaved caspase 3. Representative images, 2 IEs. Olfactory bulb (OB) and 

cerebral cortex (CC) are indicated. Scale bars are 200 µm. (E-F) Cleaved caspase 3-positive 

(E) or TUNEL-positive (F) cells were counted per 40X field in sham-treated or irradiated tissues 

from young (P0-P2) or adult (P60+) mice processed via IHC. Data are compiled from 2 IEs with 

bars representing means. See Figure S2. 

 

Figure 3: Apoptotic priming and chemosensitivity decrease as primary rat hippocampal 

neurons mature in vitro. (A) Primary neurons were isolated from E19 rat embryos and allowed 

to mature in vitro, with representative images shown at indicated time points (days in vitro). Note 

that the same cells (those inside box on low magnification) are shown across the 4 time points 

in the higher magnification window. Scale bars are 200 µm. (B) Primary neurons were BH3 

Profiled at indicated days in vitro. Representative traces are shown (mean ± SD, 2 IEs). (C) 

Summary of BH3 Profiling data of primary neurons at indicated time points. (D) Neuron nuclei 

were counted at indicated time points. (E) Chemosensitivity of rat hippocampal neurons in vitro. 

Each point represents an average of 3 measurements at each time point across 2 IEs. 

 

Figure 4: Key components of the apoptotic machinery are lost during postnatal 

development. (A) Healthy tissues were collected from mice at indicated ages and 
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immunoblotted. (B) Expression of indicated proteins in fetal and adult human tissues assessed 

via proteome data (Kim et al., 2014). See Figure S3. 

 

Figure 5: BAX and BAK dependence in early postnatal mouse tissues. (A) Tissues were 

collected from P0 mice of indicated genotypes and BH3 Profiled. Representative traces are 

shown (mean ± SD, ≥3 IEs). (B) Summary BH3 Profiling data from P0-P2 mouse tissues. Each 

point represents an average of 3 measurements in each tissue across 4 IEs. Bars represent 

means (C) Summary caspase 3 activity data from P0-P2 mouse tissues after whole body 

irradiation. Each point represents an average of 3 measurements in each tissue across 11 IEs. 

Bars represent means. See Figure S4. 

 

Figure 6: Mouse model of pediatric doxorubicin cardiotoxicity. (A) Schematic 

representation of the experiment. WT mice of different ages were injected intraperitoneally with 

3 doses of doxorubicin at 5 mg/kg on days 0, 4 and 7. Echocardiograms to assess heart 

function were performed on day 14. (B) Representative M-mode echocardiogram tracings are 

shown from WT mice treated at P5 or P60+. (C) Representative parasternal long-axis views at 

the level of the papillary muscle are shown from WT mice treated at P5. (D) Summary 

echocardiogram data. Each point represents an average of 2 measurements in each animal 

across ≥5 IEs. Bars represent means. (E) P5-P6 mice of indicated genotypes were treated as in 

(A). Bars represent means. See Figure S5 and Movies S1-S2. 

 

Figure 7: Apoptotic priming is modulated by Myc and priming is dynamically regulated in 

human brain tissue. (A) Flow cytometry-based BH3 Profiling was performed on indicated 

tissues collected from neonatal or adult mice and loss of cytochrome c (indicative of apoptosis) 
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was measured after treatment with negative control (DMSO), positive control alamethicin 

(AlaM), or BH3 peptides. For neonatal tissues, each point represents a flow cytometry-based 

measurement of either Myc negative or positive cells (as determined by co-staining for nuclear 

Myc) from a single tissue sample. For adult tissues, each point represents a flow cytometry-

based measurement of Myc negative cells. All cells analyzed by flow cytometry were CD45 

negative to exclude blood cells from analysis. Data shown are for either 3 (neonatal) or 2 (adult) 

IEs. (B) Fluorescence-based BH3 Profiling was performed on brain tissue (neocortex) of litter-

matched, neonatal Myc WT or heterozygous mice. Each point represents analysis of a single 

animal across 2 IEs. (C) MycER mice were treated with vehicle (oil) or tamoxifen (tam) to 

activate Myc for 3 days and then irradiated (8 Gy). TUNEL+ cells were counted per 20X field. (D) 

Flow cytometry-based BH3 Profiling was performed on tissues from (C) and each point 

represents the loss of cytochrome c in cells that are nuclear Myc-positive vs -negative from 

each tamoxifen-treated animal across 2 IEs. (E) After injection with vehicle or concanavalin A, 

liver tissue was collected from mice at indicated time points and Myc positivity was measured in 

hepatocytes via flow cytometry. Each point represents one animal across 2 IEs. (F) 96 hours 

after injection with concanavalin A, liver tissue was collected and flow cytometry-based BH3 

Profiling was performed on hepatocytes while monitoring nuclear Myc expression. Each point 

represents one animal across 3 IEs. (G) ChIP-qPCR was performed to measure Myc occupancy 

on promoters for positive control (Mybbp1a) and negative control (Untr6) genes, along with 

genes of interest. Values shown are binding events detected per µg chromatin. In (A-G), bars 

represent means. (H) Representative BH3 Profile traces (mean ± SD) from healthy human brain 

tissue obtained during resection of seizure foci. (I) Summary of fluorescence-based BH3 

Profiling data from human brain tissues. Each point represents an average of 3 measurements 

in each human brain specimen across at least 5 IEs. BAX mRNA expression across human 
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brain regions were assessed at indicated ages. (J) Immunoblotting for BAX across healthy 

human brain specimens tested in (H-I). Numbers indicate months post conception. Heatmap 

represents expression of BAX normalized to GAPDH levels. See Table S3. 
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