6,457 research outputs found
Storage of organically produced crops (OF0127T)
This is the final report of Defra Project OF0127T.
The main objective of this review was to establish best storage practice for field vegetables, potatoes, cereals and top fruit. A literature review was carried out and information was also gathered from the industry. Information relevant to growers and farmers has been drawn together to provide a comprehensive base from which technical advisory leaflets can be produced. The costs of different storage methods are provided, and case studies used wherever possible.
In general, organic crops can be stored using the same methods as conventional crops but there is an increased risk that sometimes there will be higher storage losses because pesticides and sprout suppressants are not used. On the whole, specific problems with pests and diseases can be avoided using good organic husbandry techniques and by storing undamaged, healthy crops. In the case of cereals storage at correct moisture content and temperatures can avoid pests and moulds. However, there are some areas where more technical development or research would be useful and these have been identified.
Relatively few organic growers store vegetables, but in order to maintain a supply of good quality UK produce throughout the year, more long term cold storage space is required (either on farm or in co-operative type stores). Based on the limited data available, economic analysis revealed that long term storage of organic vegetables has generally not been profitable. However, as the market expands in the future, it is likely that storage will become as essential for vegetables as it is for organic cereals and fruit
Phase-space structure of two-dimensional excitable localized structures
In this work we characterize in detail the bifurcation leading to an
excitable regime mediated by localized structures in a dissipative nonlinear
Kerr cavity with a homogeneous pump. Here we show how the route can be
understood through a planar dynamical system in which a limit cycle becomes the
homoclinic orbit of a saddle point (saddle-loop bifurcation). The whole picture
is unveiled, and the mechanism by which this reduction occurs from the full
infinite-dimensional dynamical system is studied. Finally, it is shown that the
bifurcation leads to an excitability regime, under the application of suitable
perturbations. Excitability is an emergent property for this system, as it
emerges from the spatial dependence since the system does not exhibit any
excitable behavior locally.Comment: 10 pages, 9 figure
Drifting instabilities of cavity solitons in vertical cavity surface-emitting lasers with frequency selective feedback
In this paper we study the formation and dynamics of self-propelled cavity
solitons (CSs) in a model for vertical cavity surface-emitting lasers (VCSELs)
subjected to external frequency selective feedback (FSF), and build their
bifurcation diagram for the case where carrier dynamics is eliminated. For low
pump currents, we find that they emerge from the modulational instability point
of the trivial solution, where traveling waves with a critical wavenumber are
formed. For large currents, the branch of self-propelled solitons merges with
the branch of resting solitons via a pitchfork bifurcation. We also show that a
feedback phase variation of 2\pi can transform a CS (whether resting or moving)
into a different one associated to an adjacent longitudinal external cavity
mode. Finally, we investigate the influence of the carrier dynamics, relevant
for VCSELs. We find and analyze qualitative changes in the stability properties
of resting CSs when increasing the carrier relaxation time. In addition to a
drifting instability of resting CSs, a new kind of instability appears for
certain ranges of carrier lifetime, leading to a swinging motion of the CS
center position. Furthermore, for carrier relaxation times typical of VCSELs
the system can display multistability of CSs.Comment: 11 pages, 12 figure
Frequency selection by soliton excitation in nondegenerate intracavity downconversion
We show that soliton excitation in intracavity downconversion naturally
selects a strictly defined frequency difference between the signal and idler
fields. In particular, this phenomenon implies that if the signal has smaller
losses than the idler then its frequency is pulled away from the cavity
resonance and the idler frequency is pulled towards the resonance and {\em vice
versa}. The frequency selection is shown to be closely linked with the relative
energy balance between the idler and signal fields.Comment: 5 pages, 3 figures. To appear in Phys Rev Let
Steps towards a map of the nearby universe
We present a new analysis of the Sloan Digital Sky Survey data aimed at
producing a detailed map of the nearby (z < 0.5) universe. Using neural
networks trained on the available spectroscopic base of knowledge we derived
distance estimates for about 30 million galaxies distributed over ca. 8,000 sq.
deg. We also used unsupervised clustering tools developed in the framework of
the VO-Tech project, to investigate the possibility to understand the nature of
each object present in the field and, in particular, to produce a list of
candidate AGNs and QSOs.Comment: 3 pages, 1 figure. To appear in Nucl Phys. B, in the proceedings of
the NOW-2006 (Neutrino Oscillation Workshop - 2006), R. Fogli et al. ed
Optomechanical self-structuring in cold atomic gases
The rapidly developing field of optomechanics aims at the combined control of
optical and mechanical (solid-state or atomic) modes. In particular, laser
cooled atoms have been used to exploit optomechanical coupling for
self-organization in a variety of schemes where the accessible length scales
are constrained by a combination of pump modes and those associated to a second
imposed axis, typically a cavity axis. Here, we consider a system with many
spatial degrees of freedom around a single distinguished axis, in which two
symmetries - rotations and translations in the plane orthogonal to the pump
axis - are spontaneously broken. We observe the simultaneous spatial
structuring of the density of a cold atomic cloud and an optical pump beam. The
resulting patterns have hexagonal symmetry. The experiment demonstrates the
manipulation of matter by opto-mechanical self-assembly with adjustable length
scales and can be potentially extended to quantum degenerate gases.Comment: 20 pages, 6 figure
Fluctuations and correlations in hexagonal optical patterns
We analyze the influence of noise in transverse hexagonal patterns in
nonlinear Kerr cavities. The near field fluctuations are determined by the
neutrally stable Goldstone modes associated to translational invariance and by
the weakly damped soft modes. However these modes do not contribute to the far
field intensity fluctuations which are dominated by damped perturbations with
the same wave vectors than the pattern. We find strong correlations between the
intensity fluctuations of any arbitrary pair of wave vectors of the pattern.
Correlation between pairs forming 120 degrees is larger than between pairs
forming 180 degrees, contrary to what a naive interpretation of emission in
terms of twin photons would suggest.Comment: 10 pages, 13 figure
- …
