618 research outputs found
Low density lipoprotein and liposome mediated uptake and cytotoxic effect of N4-octadecyl-1-β-D-arabinofuranosylcytosine in Daudi lymphoma cells
Low density lipoprotein (LDL) receptor-mediated uptake and cytotoxic effects of N4-octadecyl-1-beta-D-arabinofuranosylcytosine (NOAC) were studied in Daudi lymphoma cells. NOAC was either incorporated into LDL or liposomes to compare specific and unspecific uptake mechanisms. Binding of LDL to Daudi cells was not altered after NOAC incorporation (K(D) 60 nM). Binding of liposomal NOAC was not saturable with increasing concentrations. Specific binding of NOAC-LDL to Daudi cells was five times higher than to human lymphocytes. LDL receptor binding could be blocked and up- or down-regulated. Co-incubation with colchicine reduced NOAC-LDL uptake by 36%. These results suggested that NOAC-LDL is taken up via the LDL receptor pathway. In an in vitro cytotoxicity test, the IC50 of NOAC-LDL was about 160 microM, whereas with liposomal NOAC the IC50 was 40 microM. Blocking the LDL receptors with empty LDL protected 50% of the cells from NOAC cytotoxicity. The cellular distribution of NOAC-LDL or NOAC-liposomes differed only in the membrane and nuclei fraction with 13% and 6% respectively. Although it is more convenient to prepare NOAC-liposomes as compared to the loading of LDL particles with the drug, the receptor-mediated uptake of NOAC-LDL provides an interesting rationale for the specific delivery of the drug to tumours that express elevated numbers of LDL receptors
Search for supersymmetric particles in scenarios with a gravitino LSP and stau NLSP
Sleptons, neutralinos and charginos were searched for in the context of
scenarios where the lightest supersymmetric particle is the gravitino. It was
assumed that the stau is the next-to-lightest supersymmetric particle. Data
collected with the DELPHI detector at a centre-of-mass energy near 189 GeV were
analysed combining the methods developed in previous searches at lower
energies. No evidence for the production of these supersymmetric particles was
found. Hence, limits were derived at 95% confidence level.Comment: 31 pages, 14 figure
Cellular uptake, cytotoxicity and DNA-binding studies of the novel imidazoacridinone antineoplastic agent C1311
C1311 is a novel therapeutic agent with potent activity against experimental colorectal cancer that has been selected for entry into clinical trial. The compound has previously been shown to have DNA-binding properties and to inhibit the catalytic activity of topoisomerase II. In this study, cellular uptake and mechanisms by which C1311 interacts with DNA and exerts cytotoxic effects in intact colon carcinoma cells were investigated. The HT29 colon cancer cell line was chosen to follow cellular distribution of C1311 over a time course of 24 h at drug concentrations that just inhibited cell proliferation by 50% or 100%. Nuclear uptake of C1311 and co-localization with lysosomal or mitochondrial dyes was examined by fluorescence microscopy and effects on these cellular compartments were determined by measurement of acid phosphatase levels, rhodamine 123 release or DNA-binding behaviour. The strength and mode of DNA binding was established by thermal melting stabilization, direct titration and viscometric studies of host duplex length. The onset of apoptosis was followed using a TUNEL assay and DNA-fragmentation to determine a causal relationship of cell death. Growth inhibition of HT29 cells by C1311 was concomitant with rapid drug accumulation in nuclei and in this context we showed that the compound binds to duplex DNA by intercalation, with likely A/T sequence-preferential binding. Drug uptake was also seen in lysosomes, leading to lysosomal rupture and a marked increase of acid phosphatase activity 8 h after exposure to C1311 concentrations that effect total growth inhibition. Moreover, at these concentrations lysosomal swelling and breakdown preceded apoptosis, which was not evident up to 24 h after exposure to drug. Thus, the lysosomotropic effect of C1311 appears to be a novel feature of this anticancer agent. As it is unlikely that C1311-induced DNA damage alone would be sufficient for cytotoxic activity, lysosomal rupture may be a critical component for therapeutic efficacy. © 1999 Cancer Research Campaig
Процесс анализа угроз, влияющих на экономическую устойчивость предприятия
На основании проведенного исследования были выявлены факторы возникновения угроз, их группировка по степени воздействию на экономическую устойчивость предприятий и рассмотрена формализация процесса анализа угроз экономической устойчивости предприятий. В условиях рыночной экономики невозможно управлять предприятием без учета влияния угроз, а для эффективного управления важно не только знать об их присутствии, а и правильно идентифицировать конкретную угрозу.На підставі проведеного дослідження були виявлені чинники виникнення загроз, їх угруповання по степені впливу на економічну стійкість підприємств і розглянута формалізація процесу аналізу загроз економічної стійкості підприємств. В умовах ринкової економіки неможливо керувати підприємством без вивчення впливу загроз, а для ефективного керування важливо не тільки знати про їх присутність, а і правильно ідентифікувати конкретну загрозу.On the basis of the conducted research the factors of origin of threats were exposed, their gourmet on a degree to influence on economic stability of enterprises and formalization of process of analysis of threats of economic stability of enterprises is considered. In the conditions of market economy it is impossible to manage an enterprise without taking into account influencing of threats, and for the effective management it is important not only to know about their presence, and to identify the concrete threat correctly
Evidence in the learning organization
<p>Abstract</p> <p>Background</p> <p>Organizational leaders in business and medicine have been experiencing a similar dilemma: how to ensure that their organizational members are adopting work innovations in a timely fashion. Organizational leaders in healthcare have attempted to resolve this dilemma by offering specific solutions, such as evidence-based medicine (EBM), but organizations are still not systematically adopting evidence-based practice innovations as rapidly as expected by policy-makers (the knowing-doing gap problem). Some business leaders have adopted a systems-based perspective, called the learning organization (LO), to address a similar dilemma. Three years ago, the Society of General Internal Medicine's Evidence-based Medicine Task Force began an inquiry to integrate the EBM and LO concepts into one model to address the knowing-doing gap problem.</p> <p>Methods</p> <p>During the model development process, the authors searched several databases for relevant LO frameworks and their related concepts by using a broad search strategy. To identify the key LO frameworks and consolidate them into one model, the authors used consensus-based decision-making and a narrative thematic synthesis guided by several qualitative criteria. The authors subjected the model to external, independent review and improved upon its design with this feedback.</p> <p>Results</p> <p>The authors found seven LO frameworks particularly relevant to evidence-based practice innovations in organizations. The authors describe their interpretations of these frameworks for healthcare organizations, the process they used to integrate the LO frameworks with EBM principles, and the resulting Evidence in the Learning Organization (ELO) model. They also provide a health organization scenario to illustrate ELO concepts in application.</p> <p>Conclusion</p> <p>The authors intend, by sharing the LO frameworks and the ELO model, to help organizations identify their capacities to learn and share knowledge about evidence-based practice innovations. The ELO model will need further validation and improvement through its use in organizational settings and applied health services research.</p
Cancer effects of formaldehyde: a proposal for an indoor air guideline value
Formaldehyde is a ubiquitous indoor air pollutant that is classified as “Carcinogenic to humans (Group 1)” (IARC, Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropanol-2-ol. IARC monographs on the evaluation of carcinogenic risks to humans, vol 88. World Health Organization, Lyon, pp 39–325, 2006). For nasal cancer in rats, the exposure–response relationship is highly non-linear, supporting a no-observed-adverse-effect level (NOAEL) that allows setting a guideline value. Epidemiological studies reported no increased incidence of nasopharyngeal cancer in humans below a mean level of 1 ppm and peak levels below 4 ppm, consistent with results from rat studies. Rat studies indicate that cytotoxicity-induced cell proliferation (NOAEL at 1 ppm) is a key mechanism in development of nasal cancer. However, the linear unit risk approach that is based on conservative (“worst-case”) considerations is also used for risk characterization of formaldehyde exposures. Lymphohematopoietic malignancies are not observed consistently in animal studies and if caused by formaldehyde in humans, they are high-dose phenomenons with non-linear exposure–response relationships. Apparently, these diseases are not reported in epidemiological studies at peak exposures below 2 ppm and average exposures below 0.5 ppm. At the similar airborne exposure levels in rodents, the nasal cancer effect is much more prominent than lymphohematopoietic malignancies. Thus, prevention of nasal cancer is considered to prevent lymphohematopoietic malignancies. Departing from the rat studies, the guideline value of the WHO (Air quality guidelines for Europe, 2nd edn. World Health Organization, Regional Office for Europe, Copenhagen, pp 87–91, 2000), 0.08 ppm (0.1 mg m−3) formaldehyde, is considered preventive of carcinogenic effects in compliance with epidemiological findings
Biology of Streptococcus mutans-Derived Glucosyltransferases: Role in Extracellular Matrix Formation of Cariogenic Biofilms
The importance of Streptococcus mutans in the etiology and pathogenesis of dental caries is certainly controversial, in part because excessive attention is paid to the numbers of S. mutans and acid production while the matrix within dental plaque has been neglected. S. mutans does not always dominate within plaque; many organisms are equally acidogenic and aciduric. It is also recognized that glucosyltransferases from S. mutans (Gtfs) play critical roles in the development of virulent dental plaque. Gtfs adsorb to enamel synthesizing glucans in situ, providing sites for avid colonization by microorganisms and an insoluble matrix for plaque. Gtfs also adsorb to surfaces of other oral microorganisms converting them to glucan producers. S. mutans expresses 3 genetically distinct Gtfs; each appears to play a different but overlapping role in the formation of virulent plaque. GtfC is adsorbed to enamel within pellicle whereas GtfB binds avidly to bacteria promoting tight cell clustering, and enhancing cohesion of plaque. GtfD forms a soluble, readily metabolizable polysaccharide and acts as a primer for GtfB. The behavior of soluble Gtfs does not mirror that observed with surface-adsorbed enzymes. Furthermore, the structure of polysaccharide matrix changes over time as a result of the action of mutanases and dextranases within plaque. Gtfs at distinct loci offer chemotherapeutic targets to prevent caries. Nevertheless, agents that inhibit Gtfs in solution frequently have a reduced or no effect on adsorbed enzymes. Clearly, conformational changes and reactions of Gtfs on surfaces are complex and modulate the pathogenesis of dental caries in situ, deserving further investigation
- …