21 research outputs found
Structure of a bacterial cell surface decaheme electron conduit
Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular intercytochrome electron exchange along ânanowireâ appendages. We present a 3.2-Ă
crystal structure of one of these decaheme cytochromes, MtrF, that allows the spatial organization of the 10 hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65-Ă
octaheme chain transects the length of the protein and is bisected by a planar 45-Ă
tetraheme chain that connects two extended Greek key split Ă-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g., minerals), soluble substrates (e.g., flavins), and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface
Solution-Based Structural Analysis of the Decaheme Cytochrome, MtrA, by Small-Angle X-ray Scattering and Analytical Ultracentrifugation
The potential exploitation of metal-reducing bacteria as a means for environmental cleanup or alternative fuel is an exciting prospect; however, the cellular processes that would allow for these applications need to be better understood. MtrA is a periplasmic decaheme c-type cytochrome from Shewanella oneidensis involved in the reduction of extracellular iron oxides and therefore is a critical element in Shewanella ability to engage in extracellular charge transfer. As a relatively small 333-residue protein, the heme content is surprisingly high. MtrA is believed to obtain electrons from the inner membrane-bound quinol oxidoreductase, CymA, and shuttle them across the outer membrane to MtrC, another decaheme cytochrome that directly interacts with insoluble metal oxides. How MtrA is able to perform this task is a question of interest. Here through the use of two solution-based techniques, small-angle X-ray scattering (SAXS) and analytical ultracentrifugation (AUC), we present the first structural analysis of MtrA. Our results establish that between 0.5 and 4 mg/mL, MtrA exists as a monomeric protein that is shaped like an extended molecular âwireâ with a maximum protein dimension (D[subscript max]) of 104 Ă
and a rod-like aspect ratio of 2.2 to 2.5. This study contributes to a greater understanding of how MtrA fulfills its role in the redox processes that must occur before electrons reach the outside of the cell.National Science Foundation (U.S.). (0546323)National Institutes of Health (U.S.) (Grant Number F32GM904862)Howard Hughes Medical Institute. InvestigatorNational Science Foundation (U.S.) (Award DMR- 0936384
Towards Electrosynthesis in Shewanella: Energetics of Reversing the Mtr Pathway for Reductive Metabolism
Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain MR-1, an electron transfer conduit consisting of cytochromes and structural proteins, known as the Mtr respiratory pathway, catalyzes electron flow from cytoplasmic oxidative reactions to electrodes. Reversing this electron flow to drive microbial reductive metabolism offers a possible route for electrosynthesis of high value fuels and chemicals. We examined electron flow from electrodes into Shewanella to determine the feasibility of this process, the molecular components of reductive electron flow, and what driving forces were required. Addition of fumarate to a film of S. oneidensis adhering to a graphite electrode poised at â0.36 V versus standard hydrogen electrode (SHE) immediately led to electron uptake, while a mutant lacking the periplasmic fumarate reductase FccA was unable to utilize electrodes for fumarate reduction. Deletion of the gene encoding the outer membrane cytochrome-anchoring protein MtrB eliminated 88% of fumarate reduction. A mutant lacking the periplasmic cytochrome MtrA demonstrated more severe defects. Surprisingly, disruption of menC, which prevents menaquinone biosynthesis, eliminated 85% of electron flux. Deletion of the gene encoding the quinone-linked cytochrome CymA had a similar negative effect, which showed that electrons primarily flowed from outer membrane cytochromes into the quinone pool, and back to periplasmic FccA. Soluble redox mediators only partially restored electron transfer in mutants, suggesting that soluble shuttles could not replace periplasmic protein-protein interactions. This work demonstrates that the Mtr pathway can power reductive reactions, shows this conduit is functionally reversible, and provides new evidence for distinct CymA:MtrA and CymA:FccA respiratory units
Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals
The mineral-respiring bacterium Shewanella oneidensis uses a protein complex, MtrCAB, composed of two decaheme cytochromes, MtrC and MtrA, brought together inside a transmembrane porin, MtrB, to transport electrons across the outer membrane to a variety of mineral-based electron acceptors. A proteoliposome system containing a pool of internalized electron carriers was used to investigate how the topology of the MtrCAB complex relates to its ability to transport electrons across a lipid bilayer to externally located Fe(III) oxides. With MtrA facing the interior and MtrC exposed on the outer surface of the phospholipid bilayer, the established in vivo orientation, electron transfer from the interior electron carrier pool through MtrCAB to solid-phase Fe(III) oxides was demonstrated. The rates were 10(3) times higher than those reported for reduction of goethite, hematite, and lepidocrocite by S. oneidensis, and the order of the reaction rates was consistent with those observed in S. oneidensis cultures. In contrast, established rates for single turnover reactions between purified MtrC and Fe(III) oxides were 10(3) times lower. By providing a continuous flow of electrons, the proteoliposome experiments demonstrate that conduction through MtrCAB directly to Fe(III) oxides is sufficient to support in vivo, anaerobic, solid-phase iron respiration
Extracellular Reduction of Hexavalent Chromium by Cytochromes MtrC and OmcA of Shewanella oneidensis MR-1
To characterize the roles of cytochromes MtrC and OmcA of
Shewanella oneidensis
MR-1 in Cr(VI) reduction, the effects of deleting the
mtrC
and/or
omcA
gene on Cr(VI) reduction and the cellular locations of reduced Cr(III) precipitates were investigated. Compared to the rate of reduction of Cr(VI) by the wild type (wt), the deletion of
mtrC
decreased the initial rate of Cr(VI) reduction by 43.5%, while the deletion of
omcA
or both
mtrC
and
omcA
lowered the rate by 53.4% and 68.9%, respectively. In wt cells, Cr(III) precipitates were detected by transmission electron microscopy in the extracellular matrix between the cells, in association with the outer membrane, and inside the cytoplasm. No extracellular matrix-associated Cr(III) precipitates, however, were found in the cytochrome mutant cell suspension. In mutant cells without either MtrC or OmcA, most Cr(III) precipitates were found in association with the outer membrane, while in mutant cells lacking both MtrC and OmcA, most Cr(III) precipitates were found inside the cytoplasm. Cr(III) precipitates were also detected by scanning election microscopy on the surfaces of the wt and mutants without MtrC or OmcA but not on the mutant cells lacking both MtrC and OmcA, demonstrating that the deletion of
mtrC
and
omcA
diminishes the extracellular formation of Cr(III) precipitates. Furthermore, purified MtrC and OmcA reduced Cr(VI) with apparent
k
cat
values of 1.2 ± 0.2 (mean ± standard deviation) and 10.2 ± 1 s
â1
and
K
m
values of 34.1 ± 4.5 and 41.3 ± 7.9 ΌM, respectively. Together, these results consistently demonstrate that MtrC and OmcA are the terminal reductases used by
S. oneidensis
MR-1 for extracellular Cr(VI) reduction where OmcA is a predominant Cr(VI) reductase
Investigation of the Electron Transport Chain to and the Catalytic Activity of the Diheme Cytochrome c Peroxidase CcpA of Shewanella oneidensisâżâ
Bacterial diheme c-type cytochrome peroxidases (BCCPs) catalyze the periplasmic reduction of hydrogen peroxide to water. The gammaproteobacterium Shewanella oneidensis produces the peroxidase CcpA under a number of anaerobic conditions, including dissimilatory iron-reducing conditions. We wanted to understand the function of this protein in the organism and its putative connection to the electron transport chain to ferric iron. CcpA was isolated and tested for peroxidase activity, and its structural conformation was analyzed by X-ray crystallography. CcpA exhibited in vitro peroxidase activity and had a structure typical of diheme peroxidases. It was produced in almost equal amounts under anaerobic and microaerophilic conditions. With 50 mM ferric citrate and 50 ÎŒM oxygen in the growth medium, CcpA expression results in a strong selective advantage for the cell, which was detected in competitive growth experiments with wild-type and ÎccpA mutant cells that lack the entire ccpA gene due to a markerless deletion. We were unable to reduce CcpA directly with CymA, MtrA, or FccA, which are known key players in the chain of electron transport to ferric iron and fumarate but identified the small monoheme ScyA as a mediator of electron transport between CymA and BCCP. To our knowledge, this is the first detailed description of a complete chain of electron transport to a periplasmic c-type cytochrome peroxidase. This study furthermore reports the possibility of establishing a specific electron transport chain using c-type cytochromes
Bacterial Power: An Alternative Energy Source
The demand for energy and the limited supply of fossil fuels and their impact in the environment have required the development of alternative energy sources. Among the next generation of energy sources, microbial fuel cells (MFCs) have emerged as a promising technology due to their ability to recover energy from wastewaters in the form of electricity using electroactive microorganisms as catalysts. Among the various factors that affect power generation performance in MFCs, the efficiency of extracellular electron transfer (EET) is one of the most important. Several enzymes, specifically multiheme cytochromes, have been implicated in this process although the electron transfer chain organization remains to be fully understood. In this chapter, we review in detail the mechanisms that support EET from electroactive microorganisms to the anode in MFCs. We focus on the model organism Shewanella oneidensis MR-1, due to the existence of an extensive molecular characterization of its EET processes. The recent developments in the characterization of the multiheme cytochromes involved in these mechanisms will also be reviewed.authorsversionpublishe