54 research outputs found

    The RND-family transporter, HpnN, is required for hopanoid localization to the outer membrane of Rhodopseudomonas palustris TIE-1

    Get PDF
    Rhodopseudomonas palustris TIE-1 is a Gram-negative bacterium that produces structurally diverse hopanoid lipids that are similar to eukaryotic steroids. Its genome encodes several homologues to proteins involved in eukaryotic steroid trafficking. In this study, we explored the possibility that two of these proteins are involved in intracellular hopanoid transport. R. palustris has a sophisticated membrane system comprising outer, cytoplasmic, and inner cytoplasmic membranes. It also divides asymmetrically, producing a mother and swarmer cell. We deleted genes encoding two putative hopanoid transporters that belong to the resistance–nodulation– cell division superfamily. Phenotypic analyses revealed that one of these putative transporters (HpnN) is essential for the movement of hopanoids from the cytoplasmic to the outer membrane, whereas the other (Rpal_4267) plays a minor role. C30 hopanoids, such as diploptene, are evenly distributed between mother and swarmer cells, whereas hpnN is required for the C35 hopanoid, bacteriohopanetetrol, to remain localized to the mother cell type. Mutant cells lacking HpnN grow like the WT at 30 °C but slower at 38 °C. Following cell division at 38 °C, the ΔhpnN cells remain connected by their cell wall, forming long filaments. This phenotype may be attributed to hopanoid mislocalization because a double mutant deficient in both hopanoid biosynthesis and transport does not form filaments. However, the lack of hopanoids severely compromises cell growth at higher temperatures more generally. Because hopanoid mutants only manifest a strong phenotype under certain conditions, R. palustris is an attractive model organism in which to study their transport and function

    Quantitative principles of cis-translational control by general mRNA sequence features in eukaryotes.

    Get PDF
    BackgroundGeneral translational cis-elements are present in the mRNAs of all genes and affect the recruitment, assembly, and progress of preinitiation complexes and the ribosome under many physiological states. These elements include mRNA folding, upstream open reading frames, specific nucleotides flanking the initiating AUG codon, protein coding sequence length, and codon usage. The quantitative contributions of these sequence features and how and why they coordinate to control translation rates are not well understood.ResultsHere, we show that these sequence features specify 42-81% of the variance in translation rates in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana, Mus musculus, and Homo sapiens. We establish that control by RNA secondary structure is chiefly mediated by highly folded 25-60 nucleotide segments within mRNA 5' regions, that changes in tri-nucleotide frequencies between highly and poorly translated 5' regions are correlated between all species, and that control by distinct biochemical processes is extensively correlated as is regulation by a single process acting in different parts of the same mRNA.ConclusionsOur work shows that general features control a much larger fraction of the variance in translation rates than previously realized. We provide a more detailed and accurate understanding of the aspects of RNA structure that directs translation in diverse eukaryotes. In addition, we note that the strongly correlated regulation between and within cis-control features will cause more even densities of translational complexes along each mRNA and therefore more efficient use of the translation machinery by the cell

    Crystal Structure of Outer Membrane Protein NMB0315 from Neisseria meningitidis

    Get PDF
    NMB0315 is an outer membrane protein of Neisseria meningitidis serogroup B (NMB) and a potential candidate for a broad-spectrum vaccine against meningococcal disease. The crystal structure of NMB0315 was solved by single-wavelength anomalous dispersion (SAD) at a resolution of 2.4 Ã… and revealed to be a lysostaphin-type peptidase of the M23 metallopeptidase family. The overall structure consists of three well-separated domains and has no similarity to any previously published structure. However, only the topology of the carboxyl-terminal domain is highly conserved among members of this family, and this domain is a zinc-dependent catalytic unit. The amino-terminal domain of the structure blocks the substrate binding pocket in the carboxyl-terminal domain, indicating that the wild-type full-length protein is in an inactive conformational state. Our studies improve the understanding of the catalytic mechanism of M23 metallopeptidases

    A Hybrid of Metabolic Flux Analysis and Bayesian Factor Modeling for Multiomic Temporal Pathway Activation.

    Get PDF
    The growing availability of multiomic data provides a highly comprehensive view of cellular processes at the levels of mRNA, proteins, metabolites, and reaction fluxes. However, due to probabilistic interactions between components depending on the environment and on the time course, casual, sometimes rare interactions may cause important effects in the cellular physiology. To date, interactions at the pathway level cannot be measured directly, and methodologies to predict pathway cross-correlations from reaction fluxes are still missing. Here, we develop a multiomic approach of flux-balance analysis combined with Bayesian factor modeling with the aim of detecting pathway cross-correlations and predicting metabolic pathway activation profiles. Starting from gene expression profiles measured in various environmental conditions, we associate a flux rate profile with each condition. We then infer pathway cross-correlations and identify the degrees of pathway activation with respect to the conditions and time course using Bayesian factor modeling. We test our framework on the most recent metabolic reconstruction of Escherichia coli in both static and dynamic environments, thus predicting the functionality of particular groups of reactions and how it varies over time. In a dynamic environment, our method can be readily used to characterize the temporal progression of pathway activation in response to given stimuli

    mTORC1-mediated translational elongation limits intestinal tumour initiation and growth.

    Get PDF
    Inactivation of APC is a strongly predisposing event in the development of colorectal cancer, prompting the search for vulnerabilities specific to cells that have lost APC function. Signalling through the mTOR pathway is known to be required for epithelial cell proliferation and tumour growth, and the current paradigm suggests that a critical function of mTOR activity is to upregulate translational initiation through phosphorylation of 4EBP1 (refs 6, 7). This model predicts that the mTOR inhibitor rapamycin, which does not efficiently inhibit 4EBP1 (ref. 8), would be ineffective in limiting cancer progression in APC-deficient lesions. Here we show in mice that mTOR complex 1 (mTORC1) activity is absolutely required for the proliferation of Apc-deficient (but not wild-type) enterocytes, revealing an unexpected opportunity for therapeutic intervention. Although APC-deficient cells show the expected increases in protein synthesis, our study reveals that it is translation elongation, and not initiation, which is the rate-limiting component. Mechanistically, mTORC1-mediated inhibition of eEF2 kinase is required for the proliferation of APC-deficient cells. Importantly, treatment of established APC-deficient adenomas with rapamycin (which can target eEF2 through the mTORC1-S6K-eEF2K axis) causes tumour cells to undergo growth arrest and differentiation. Taken together, our data suggest that inhibition of translation elongation using existing, clinically approved drugs, such as the rapalogs, would provide clear therapeutic benefit for patients at high risk of developing colorectal cancer

    Peptidoglycan hydrolases-potential weapons against Staphylococcus aureus

    Full text link

    Tumor cell survival pathways activated by photodynamic therapy: a molecular basis for pharmacological inhibition strategies

    Get PDF

    Folds and activities of peptidoglycan amidases

    No full text
    Bacterial peptidoglycan amidases are a large and diverse group of enzymes. During the last few years, genomic sequence information has accumulated to an extent such that lists of proven or predicted peptidoglycan amidases can now be expected to be fairly complete. Moreover, representative crystal structures for most groups of phylogenetically related peptidoglycan amidases have been solved. Here, sequence and structural information is combined with published biochemical findings to demonstrate that (a) peptidoglycan amidases have evolved for almost every bond that occurs in peptidoglycan, (b) there are enzymes that share the fold, yet cleave different bonds and (c) there are enzymes that have entirely different folds and must have evolved independently, and yet cleave the same peptide bond. It is shown that despite these complications, some rules can be deduced from the available biochemical and structural information that can be useful to predict the specificity of hypothetical peptidoglycan hydrolases, for which only sequence information is available

    Crystal structures of active LytM

    No full text

    Mutational analysis of peptidoglycan amidase MepA

    No full text
    Murein endopeptidase A (MepA) from Escherichia coli is a periplasmic peptidoglycan amidase that cleaves d,d amide bonds between d-alanine and meso-2,6-diaminopimelic acid in E. coli peptidoglycan. MepA and its homologues in other proteobacteria share overall structural similarity with d-Ala-d-Ala metallopeptidases and local similarity around the active site with lysostaphin-type enzymes, which has prompted the classification of these enzymes as LAS enzymes. LAS enzymes contain a single divalent cation in the active site, which is tetracoordinated in the crystal structures. Three of the metal ligands are identical in all structures, but the identity of the fourth ligand varies. Two residues in proximity to the metal might act as a general acid/base, but their role is not clear. Here, we report a new MepA expression system, which allows the separation of MepA variants from the endogenous wild-type enzyme, and an HPLC assay with a defined peptidoglycan fragment, which allows assessment of MepA activity without a refolding step. We find that the conserved metal ligands are required for folding (D120) or catalysis (H113, H211). Separate mutations of the candidate catalytic residues H206 or H209 and of the "fourth" metal ligand H110 are tolerated for folding but drastically reduce activity. Mutation of residue W203 to aspartate impairs substrate binding
    • …
    corecore