21 research outputs found

    Characterization Of Chemically Induced Ovarian Carcinomas In An Ethanol-preferring Rat Model: Influence Of Long-term Melatonin Treatment.

    Get PDF
    Ovarian cancer is the fourth most common cause of cancer deaths among women, and chronic alcoholism may exert co-carcinogenic effects. Because melatonin (mel) has oncostatic properties, we aimed to investigate and characterize the chemical induction of ovarian tumors in a model of ethanol-preferring rats and to verify the influence of mel treatment on the overall features of these tumors. After rats were selected to receive ethanol (EtOH), they were surgically injected with 100 µg of 7,12-dimethyl-benz[a]anthracene (DMBA) plus sesame oil directly under the left ovarian bursa. At 260 days old, half of the animals received i.p. injections of 200 µg mel/100 g b.w. for 60 days. Four experimental groups were established: Group C, rats bearing ovarian carcinomas (OC); Group C+EtOH, rats voluntarily consuming 10% (v/v) EtOH and bearing OC; Group C+M, rats bearing OC and receiving mel; and Group C+EtOH+M, rats with OC consuming EtOH and receiving mel. Estrous cycle and nutritional parameters were evaluated, and anatomopathological analyses of the ovarian tumors were conducted. The incidence of ovarian tumors was higher in EtOH drinking animals 120 days post-DMBA administration, and mel efficiently reduced the prevalence of some aggressive tumors. Although mel promoted high EtOH consumption, it was effective in synchronizing the estrous cycle and reducing ovarian tumor mass by 20%. While rats in the C group displayed cysts containing serous fluid, C+EtOH rats showed solid tumor masses. After mel treatment, the ovaries of these rats presented as soft and mobile tissues. EtOH consumption increased the incidence of serous papillary carcinomas and sarcomas but not clear cell carcinomas. In contrast, mel reduced the incidence of sarcomas, endometrioid carcinomas and cystic teratomas. Combination of DMBA with EtOH intake potentiated the incidence of OC with malignant histologic subtypes. We concluded that mel reduces ovarian masses and the incidence of adenocarcinomas in ethanol-deprived rats.8e8167

    Mmp-2 And Mmp-9 activities and Timp-1 and Timp-2 expression in the prostatic tissue of two ethanol-preferring rat models

    Get PDF
    We investigated whether chronic ethanol intake is capable of altering the MMP-2 and MMP-9 activities and TIMP-2 and TIMP-1 expression in the dorsal and lateral prostatic lobes of low (UChA) and high (UChB) ethanol-preferring rats. MMP-2 and MMP9 activities and TIMP-1 and TIMP-2 expression were significantly reduced in the lateral prostatic lobe of the ethanol drinking animals. Dorsal prostatic lobe was less affected showing no significant alterations in these proteins, except for a reduction in the TIMP-1 expression in UChA rats. These important findings demonstrate that chronic ethanol intake impairs the physiological balance of the prostate extracellular matrix turnover, through downregulation of MMPs, which may contribute to the development of prostatic diseases. Furthermore, since these proteins are also components of prostate secretion, the negative impact of chronic ethanol intake on fertility may also involve reduction of MMPs and TIMPs in the seminal fluid2015COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informação2011/03394-4; 2011/13713-

    Characterization of Chemically Induced Ovarian Carcinomas in an Ethanol-Preferring Rat Model: Influence of Long-Term Melatonin Treatment

    Get PDF
    Ovarian cancer is the fourth most common cause of cancer deaths among women, and chronic alcoholism may exert co-carcinogenic effects. Because melatonin (mel) has oncostatic properties, we aimed to investigate and characterize the chemical induction of ovarian tumors in a model of ethanol-preferring rats and to verify the influence of mel treatment on the overall features of these tumors. After rats were selected to receive ethanol (EtOH), they were surgically injected with 100 mu g of 7,12-dimethyl-benz[a] anthracene (DMBA) plus sesame oil directly under the left ovarian bursa. At 260 days old, half of the animals received i.p. injections of 200 mu g mel/100 g b.w. for 60 days. Four experimental groups were established: Group C, rats bearing ovarian carcinomas (OC); Group C+EtOH, rats voluntarily consuming 10% (v/v) EtOH and bearing OC; Group C+M, rats bearing OC and receiving mel; and Group C+EtOH+M, rats with OC consuming EtOH and receiving mel. Estrous cycle and nutritional parameters were evaluated, and anatomopathological analyses of the ovarian tumors were conducted. The incidence of ovarian tumors was higher in EtOH drinking animals 120 days post-DMBA administration, and mel efficiently reduced the prevalence of some aggressive tumors. Although mel promoted high EtOH consumption, it was effective in synchronizing the estrous cycle and reducing ovarian tumor mass by 20%. While rats in the C group displayed cysts containing serous fluid, C+EtOH rats showed solid tumor masses. After mel treatment, the ovaries of these rats presented as soft and mobile tissues. EtOH consumption increased the incidence of serous papillary carcinomas and sarcomas but not clear cell carcinomas. In contrast, mel reduced the incidence of sarcomas, endometrioid carcinomas and cystic teratomas. Combination of DMBA with EtOH intake potentiated the incidence of OC with malignant histologic subtypes. We concluded that mel reduces ovarian masses and the incidence of adenocarcinomas in ethanol-deprived rats.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Rutin ameliorates glycemic index, lipid profile and enzymatic activities in serum, heart and liver tissues of rats fed with a combination of hypercaloric diet and chronic ethanol consumption

    No full text
    215-222Alcoholism and obesity are strongly associated with several disorders including heart and liver diseases. This study evaluated the effects of rutin treatment in serum, heart and liver tissues of rats subjected to a combination of hypercaloric diet (HD) and chronic ethanol consumption. Rats were divided into three groups: Control: rats fed a standard diet and drinking water ad libitum; G1: rats fed the HD and receiving a solution of 10% (v/v) ethanol; and G2: rats fed the HD and ethanol solution, followed by injections of 50 mg/kg-1 rutin as treatment. After 53 days of HD and ethanol exposure, the rutin was administered every three days for nine days. At the end of the experimental period (95 days), biochemical analyses were carried out on sera, cardiac and hepatic tissues. Body weight gain and food consumption were reduced in both the G1 and G2 groups compared to control animals. Rutin effectively reduced the total lipids (TL), triglycerides (TG), total cholesterol (TC), VLDL, LDL-cholesterol and glucose levels, while it increased the HDL-cholesterol in the serum of G2 rats, compared to G1. Although rutin had no effect on total protein, albumin, uric acid and cretinine levels, it was able to restore serum activities of alkaline phosphatase (ALP), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and creatine kinase (CK) in animals fed HD and receiving ethanol. Glycogen stores were replenished in both hepatic and cardiac tissues after rutin treatment. Moreover, rutin consistently reduced hepatic levels of TG and TC and cardiac AST, ALT and CK activities. Thus, rutin treatment was effective in reducing the risk factors for cardiac and hepatic disease caused by both HD and chronic ethanol consumption. </span

    Rutin ameliorates glycemic index, lipid profile and enzymatic activities in serum, heart and liver tissues of rats fed with a combination of hypercaloric diet and chronic ethanol consumption

    No full text
    Alcoholism and obesity are strongly associated with several disorders including heart and liver diseases. This study evaluated the effects of rutin treatment in serum, heart and liver tissues of rats subjected to a combination of hypercaloric diet (HD) and chronic ethanol consumption. Rats were divided into three groups: Control: rats fed a standard diet and drinking water ad libitum; G1: rats fed the HD and receiving a solution of 10% (v/v) ethanol; and G2: rats fed the HD and ethanol solution, followed by injections of 50 mg/kg(-1) rutin as treatment. After 53 days of HD and ethanol exposure, the rutin was administered every three days for nine days. At the end of the experimental period (95 days), biochemical analyses were carried out on sera, cardiac and hepatic tissues. Body weight gain and food consumption were reduced in both the G1 and G2 groups compared to control animals. Rutin effectively reduced the total lipids (TL), triglycerides (TG), total cholesterol (TC), VLDL, LDL-cholesterol and glucose levels, while it increased the HDL-cholesterol-in the serum of G2 rats, compared to G1. Although rutin had no effect on total protein, albumin, uric acid and cretinine levels, it was able to restore serum activities of alkaline phosphatase (ALP), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alanine aminotransferase (ALT) and creatine kinase (CK) in animals fed HD and receiving ethanol. Glycogen stores were replenished in both hepatic and cardiac tissues after rutin treatment. Moreover, rutin consistently reduced hepatic levels of TG and TC and cardiac AST. ALT and CK activities. Thus, rutin treatment was effective in reducing the risk factors for cardiac and hepatic disease caused by both HD and chronic ethanol consumption.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Ethanol modulates the synthesis and catabolism of retinoic acid in the rat prostate

    No full text
    All-trans retinoic acid (atRA) maintains physiological stability of the prostate, and we reported that ethanol intake increases atRA in the rat prostate; however the mechanisms underlying these changes are unknown. We evaluated the impact of a low- and high-dose ethanol intake (UChA and UChB strains) on atRA metabolism in the dorsal and lateral prostate. Aldehyde dehydrogenase (ALDH) subtype 1A3 was increased in the dorsal prostate of UChA animals while ALDH1A1 and ALDH1A2 decreased in the lateral prostate. In UChB animals, ALDH1A1, ALDH1A2, and ALDH1A3 increased in the dorsal prostate, and ALDH1A3 decreased in the lateral prostate. atRA levels increased with the low activity of CYP2E1 and decreased with high CYP26 activity in the UChB dorsal prostate. Conversely, atRA was found to decrease when the activity of total CYP was increased in the UChA lateral prostate. Ethanol modulates the synthesis and catabolism of atRA in the prostate in a concentration-dependent manner. (C) 2015 Elsevier Inc. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    MMP-2 and MMP-9 activities and TIMP-1 and TIMP-2 expression in the prostatic tissue of two ethanol-preferring rat models

    No full text
    We investigated whether chronic ethanol intake is capable of altering the MMP-2 and MMP-9 activities and TIMP-2 and TIMP-1 expression in the dorsal and lateral prostatic lobes of low (UChA) and high (UChB) ethanol-preferring rats. MMP-2 and MMP-9 activities and TIMP-1 and TIMP-2 expression were significantly reduced in the lateral prostatic lobe of the ethanol drinking animals. Dorsal prostatic lobe was less affected showing no significant alterations in these proteins, except for a reduction in the TIMP-1 expression in UChA rats. These important findings demonstrate that chronic ethanol intake impairs the physiological balance of the prostate extracellular matrix turnover, through downregulation of MMPs, which may contribute to the development of prostatic diseases. Furthermore, since these proteins are also components of prostate secretion, the negative impact of chronic ethanol intake on fertility may also involve reduction of MMPs and TIMPs in the seminal fluid.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Evaluation of estrous cycle (days) and frequency (%) of persistent arrest in the estrous and/or diestrus stage (N = 20/group).

    No full text
    <p>Values are expressed as the means ± SD and medians (minimum/maximum values).</p><p>p<0.01 and **p<0.05 differs significantly from Groups C+EtOH and C, respectively. Two-way ANOVA followed by Tukey’s test.</p><p><sup>a, b, c</sup> p<0.05 <i>versus</i> Groups C+EtOH, C and C+EtOH+M, respectively, as analyzed using the Kruskal-Wallis test followed by a <i>post-hoc</i> Dunn’s test.</p

    Food consumption (g/day), energy intake (Kcal/day), and relative water and ethanol consumption (mL/100 g/day) in all of the experimental groups.

    No full text
    <p>The values are expressed as the means ± SD. N = 20/group.</p><p><sup>a, b, c</sup> p<0.05 <i>versus</i> Groups C+EtOH, C and C+EtOH+M, respectively. Two-way ANOVA followed by Tukey’s test. PT: Prior to melatonin treatment. AT: After melatonin treatment.</p><p>p<0.01 differs significantly from relative ethanol intake (PT) compared to Group C+EtOH+M.</p

    Detailed schedule of the experimental design.

    No full text
    <p>(<b>A</b>) Chronological scheme of ethanol intake, ovarian tumor induction and <i>mel</i> treatment (days). (<b>B</b>) Schematic protocol that was used for daily melatonin administration based on Zeitgeber Time (ZT), corresponding to environmental circadian time. ZT 13: Melatonin administration period. ZT 22: Period of euthanasia.</p
    corecore